This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264052 #49 Dec 11 2016 13:03:13 %S A264052 1,1,1,1,2,1,2,3,3,4,4,6,1,5,9,1,6,13,3,8,18,4,10,23,9,12,32,12,15,42, %T A264052 19,1,18,55,27,1,22,69,41,3,27,89,56,4,32,112,78,9,38,141,106,12,46, %U A264052 175,141,23,54,217,188,31,64,266,247,49,1,76,326,321,68,1 %N A264052 Triangle read by rows: T(n,k) (n>=0, 0<=k<=A259361(n)) is the number of integer partitions of n having k distinct parts occurring at least twice. %C A264052 Row sums give A000041. %C A264052 T(n,k) is also the number of integer partitions of n having k parts from which one can subtract 2 and still get an integer partition (mapping a partition to its conjugate sends one statistic to the other). %C A264052 T(n,k) is also the number of integer partitions of n having k distinct even parts. Example: T(6,2)= 1, counting the partition [2,4]. - _Emeric Deutsch_, Sep 19 2016 %H A264052 Alois P. Heinz, <a href="/A264052/b264052.txt">Rows n = 0..1000, flattened</a> %H A264052 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000257">The number of distinct parts of a partition that occur at least twice</a>, <a href="http://www.findstat.org/StatisticsDatabase/St000256">The number of parts from which one can subtract 2 and still get an integer partition</a>. %H A264052 V. V. Tewari, <a href="http://arxiv.org/abs/1403.5327">Kronecker Coefficients For Some Near-Rectangular Partitions</a>, arXiv:1403.5327 [math.CO], 2014, MathSciNet:3320625. %F A264052 From _Emeric Deutsch_, Nov 12 2015: (Start) %F A264052 G.f.: G(t,x) = Product_{j>=1} ((1-(1-t)x^{2j})/(1-x^j)). %F A264052 T(n,0) = A000009(n). %F A264052 T(n,1) = A090867(n). %F A264052 Sum_{k>=0} k*T(n,k) = A024786(n). %F A264052 (End) %e A264052 Triangle begins: %e A264052 1, %e A264052 1, %e A264052 1, 1, %e A264052 2, 1, %e A264052 2, 3, %e A264052 3, 4, %e A264052 4, 6, 1, %e A264052 5, 9, 1, %e A264052 6, 13, 3, %e A264052 8, 18, 4, %e A264052 10, 23, 9, %e A264052 ... %e A264052 T(6,2)= 1; namely [1,1,2,2]. - _Emeric Deutsch_, Sep 19 2016 %p A264052 b:= proc(n, i) option remember; expand( %p A264052 `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)* %p A264052 `if`(j>1, x, 1), j=0..n/i)))) %p A264052 end: %p A264052 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): %p A264052 seq(T(n), n=0..25); # _Alois P. Heinz_, Nov 02 2015 %p A264052 # second Maple program: %p A264052 g := product((1-(1-t)*x^(2*j))/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 25)): for n from 0 to 23 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 23 do seq(coeff(P[n], t, i), i = 0 .. degree(P[n])) end do; # yields sequence in triangular form - _Emeric Deutsch_, Nov 12 2015 %t A264052 T[n_, k_] := SeriesCoefficient[QPochhammer[1-t, x^2]/(t*QPochhammer[x]), {x, 0, n}, {t, 0, k}]; Table[DeleteCases[Table[T[n, k], {k, 0, n}], 0], {n, 0, 25}] // Flatten (* _Jean-François Alcover_, Dec 11 2016 *) %Y A264052 Cf. A000009, A000041, A024786, A090867, A259361. %K A264052 nonn,look,tabf %O A264052 0,5 %A A264052 _Christian Stump_, Nov 01 2015 %E A264052 More terms from _Alois P. Heinz_, Nov 02 2015