A264142 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 1,-2 or 1,1.
2, 8, 4, 18, 27, 8, 45, 144, 125, 16, 125, 720, 1440, 512, 32, 320, 3600, 15488, 14400, 2197, 64, 832, 18000, 168948, 297920, 144000, 9261, 128, 2197, 90000, 1903336, 7001316, 5953600, 1440000, 39304, 256, 5733, 450000, 20768650, 163887724
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..1..2..6..4....6..1..2..3..4....6..1..8..9..4....6..7..5..9..4 ..5..3..7.11.12...11..0.10..8..9....2..0..7.11..3....2..0..1..8..3 .10.17..9.16..8....7..5.12.13.17...10..5.12.16.17...10.11.15.13.17 .15.13.14.18.19...15.16.14.18.19...15.13.14.18.19...12.16.14.18.19
Links
- R. H. Hardin, Table of n, a(n) for n = 1..97
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +6*a(n-2) -3*a(n-3) -a(n-4)
k=3: a(n) = 10*a(n-1) for n>2
k=4: [order 8]
k=5: [order 32]
k=6: [order 95]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) +3*a(n-3) -9*a(n-4) +3*a(n-5) -a(n-6) +3*a(n-7) -a(n-8)
n=2: a(n) = 5*a(n-1) for n>3
n=3: [order 67]
n=4: [order 95]
Comments