cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264083 Number of orthogonal 3 X 3 matrices over the ring Z/nZ.

Original entry on oeis.org

1, 6, 48, 384, 240, 288, 672, 6144, 1296, 1440, 2640, 18432, 4368, 4032, 11520, 49152, 9792, 7776, 13680, 92160, 32256, 15840, 24288, 294912, 30000, 26208, 34992, 258048, 48720, 69120, 59520, 393216, 126720, 58752, 161280, 497664, 101232, 82080, 209664, 1474560
Offset: 1

Views

Author

Charles Repizo, Nov 03 2015

Keywords

Comments

Number of matrices M = [a,b,c; d,e,f; g,h,i] with 0 <= a, b, c, d, e, f, g, h, i < n such that M*transpose(M) == [1,0,0; 0,1,0; 0,0,1] (mod n).
For n > 1, a(n) is divisible by 6*A060594(n)^3. - Robert Israel, Dec 16 2015

Crossrefs

Programs

  • Magma
    Enter R := IntegerRing(n);
    korthmat := function(R,n,k);
    O := [];
    M := MatrixAlgebra(R,n);
    for x in M do
    if x*Transpose(x) eq k*M!1 and Transpose(x)*x eq k*M!1 then
    O := Append(O,x);
    end if;
    end for;
    return O;
    end function;
    # korthmat(R,3,1);
    
  • Maple
    F:= proc(n) local R,V,nR,S,nS,Rp,nRp,i,j,a,b,c,t,r,r1,count;
          R:= select(t -> t[1]^2 + t[2]^2 + t[3]^2 mod n = 1, [seq(seq(seq([a,b,c],a=0..n-1),b=0..n-1),c=0..n-1)]);
          nR:= nops(R);
          S:= select(t -> t^2 mod n = 1, {$2..n-1});
          nS:= nops(S);
          for r in R do if not assigned(V[r]) then
             for c in S do V[c*r mod n] := 0 od
          fi od;
          R:= select(r -> not assigned(V[r]), R);
          nR:= nops(R);
          count:= 0;
          for i from 1 to nR do
            r:= R[i];
            Rp:= select(j -> R[j][1]*r[1] + R[j][2]*r[2] + R[j][3]*r[3] mod n = 0, [$i+1..nR]);
            nRp:= nops(Rp);
            for j from 1 to nRp do
                r1:= R[Rp[j]];
                count:= count + 6*(1+nS)^3*nops(select(k -> R[Rp[k]][1]*r1[1] + R[Rp[k]][2]*r1[2]+R[Rp[k]][3]*r1[3] mod n = 0, [$j+1..nRp]));
            od
          od;
          count;
    end proc:
    F(1):= 1:
    seq(F(n), n=1..40); # Robert Israel, Dec 16 2015
  • PARI
    my(t=Mod(matid(3), n)); sum(a=1, n, sum(b=1, n, sum(c=1, n, sum(d=1, n, sum(e=1, n, sum(f=1, n, sum(g=1, n, sum(h=1, n, sum(i=1, n, my(M=[a, b, c; d, e, f; g, h, i]); M*M~==t))))))))) \\ Charles R Greathouse IV, Nov 10 2015

Formula

For p an odd prime, a(p) = 2*p*(p^2-1). - Tom Edgar, Nov 04 2015
From Robert Israel, Dec 16 2015: (Start)
Conjectures:
a(2^k) = 12*8^k for k >= 3.
For odd primes p, a(p^k) = a(p)*p^(3k-3) for k>=1. (End)

Extensions

a(11)-a(31) from Tom Edgar, Nov 05 2015
a(31) corrected by Robert Israel, Dec 15 2015