A264083 Number of orthogonal 3 X 3 matrices over the ring Z/nZ.
1, 6, 48, 384, 240, 288, 672, 6144, 1296, 1440, 2640, 18432, 4368, 4032, 11520, 49152, 9792, 7776, 13680, 92160, 32256, 15840, 24288, 294912, 30000, 26208, 34992, 258048, 48720, 69120, 59520, 393216, 126720, 58752, 161280, 497664, 101232, 82080, 209664, 1474560
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..124
Programs
-
Magma
Enter R := IntegerRing(n); korthmat := function(R,n,k); O := []; M := MatrixAlgebra(R,n); for x in M do if x*Transpose(x) eq k*M!1 and Transpose(x)*x eq k*M!1 then O := Append(O,x); end if; end for; return O; end function; # korthmat(R,3,1);
-
Maple
F:= proc(n) local R,V,nR,S,nS,Rp,nRp,i,j,a,b,c,t,r,r1,count; R:= select(t -> t[1]^2 + t[2]^2 + t[3]^2 mod n = 1, [seq(seq(seq([a,b,c],a=0..n-1),b=0..n-1),c=0..n-1)]); nR:= nops(R); S:= select(t -> t^2 mod n = 1, {$2..n-1}); nS:= nops(S); for r in R do if not assigned(V[r]) then for c in S do V[c*r mod n] := 0 od fi od; R:= select(r -> not assigned(V[r]), R); nR:= nops(R); count:= 0; for i from 1 to nR do r:= R[i]; Rp:= select(j -> R[j][1]*r[1] + R[j][2]*r[2] + R[j][3]*r[3] mod n = 0, [$i+1..nR]); nRp:= nops(Rp); for j from 1 to nRp do r1:= R[Rp[j]]; count:= count + 6*(1+nS)^3*nops(select(k -> R[Rp[k]][1]*r1[1] + R[Rp[k]][2]*r1[2]+R[Rp[k]][3]*r1[3] mod n = 0, [$j+1..nRp])); od od; count; end proc: F(1):= 1: seq(F(n), n=1..40); # Robert Israel, Dec 16 2015
-
PARI
my(t=Mod(matid(3), n)); sum(a=1, n, sum(b=1, n, sum(c=1, n, sum(d=1, n, sum(e=1, n, sum(f=1, n, sum(g=1, n, sum(h=1, n, sum(i=1, n, my(M=[a, b, c; d, e, f; g, h, i]); M*M~==t))))))))) \\ Charles R Greathouse IV, Nov 10 2015
Formula
For p an odd prime, a(p) = 2*p*(p^2-1). - Tom Edgar, Nov 04 2015
From Robert Israel, Dec 16 2015: (Start)
Conjectures:
a(2^k) = 12*8^k for k >= 3.
For odd primes p, a(p^k) = a(p)*p^(3k-3) for k>=1. (End)
Extensions
a(11)-a(31) from Tom Edgar, Nov 05 2015
a(31) corrected by Robert Israel, Dec 15 2015
Comments