This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264104 #23 Feb 12 2018 02:39:36 %S A264104 21,55,253,406,1081,1378,1711,3403,3916,5671,9316,11026,13861,14878, %T A264104 15931,25651,27028,34453,36046,42778,50086,60031,64261,73153,75466, %U A264104 108811,114481,126253,129286,154846,158203,161596,171991,175528,212878,258121,298378,317206,326836,351541,366796,371953,392941 %N A264104 Numbers n with the property that the symmetric representation of sigma(n) has four parts, each of width one and two regions meet at the center of the Dyck path. %C A264104 This sequence is a subsequence of A264102 and also of A014105, the second hexagonal numbers. Every number in this sequence is a triangular number. %C A264104 The sequence A156592 of products of a Sophie Germain prime (A005384) and its associated safe prime (A005385) except for the first pair (2, 5) forms a subsequence of this sequence, the first column in the irregular triangular grid in the example. %C A264104 The areas of the first two regions are (2^(m+1) - 1) * (2^(m+1) * p^2 * p + 1) / 2 and (2^(m+1) - 1) * (2^(m+1) * p + p + 1) / 2, respectively. Twice their sum equals sigma(n) = (2^(m+1) - 1) * (p + 1) * (2^(m+1) * p + 2). %C A264104 For a proof of the formula for this sequence see the link. %H A264104 Hartmut F. W. Hoft, <a href="/A264104/a264104.pdf">Diagram of symmetric representations of sigma(n), for n = 21, 55, 253, 406</a> %H A264104 Hartmut F. W. Hoft, <a href="/A264104/a264104_1.pdf">Proof of 4 regions width 1 and 2 meet at center</a> %F A264104 n = 2^m * p * (2^(m+1) * p + 1) where m >= 0, 2^(m+1) < p and p as well as 2^(m+1) * p + 1 are prime. %e A264104 406 = 2*7*29 is in the sequence since m = 1 and 4 < 7 < 28 < 29. The first two regions in the symmetric representation of sigma(406) = 720 start with legs 1 and 7 and have areas 306 and 54, respectively. Note also that 406 is a triangular number and the middle two regions meet at the center of the Dyck path. %e A264104 10 does not belong to this sequence since the symmetric representation of sigma(10) has two regions of width 1 that meet at the diagonal. %e A264104 There is a natural arrangement of the numbers n = 2^m * p * (2^(m+1) * p + 1) as a sparse irregular triangular (p,m)-grid. %e A264104 p\m| 0 1 2 3 4 5 ... %e A264104 ------------------------------------------------------- %e A264104 3 | 21 %e A264104 5 | 55 %e A264104 7 | 406 %e A264104 11 | 253 3916 %e A264104 13 | 1378 %e A264104 17 | 9316 %e A264104 19 | %e A264104 23 | 1081 %e A264104 29 | 1711 27028 %e A264104 31 | %e A264104 37 | 11026 175528 %e A264104 41 | 3403 %e A264104 43 | 14878 %e A264104 47 | %e A264104 53 | 5671 1439056 %e A264104 59 | 1783216 %e A264104 61 | 476776 %e A264104 67 | 36046 9195616 %e A264104 71 | 161596 2582128 %e A264104 73 | 42778 10916128 %e A264104 ... %e A264104 The first number in the m = 6 column is 181880128 = 2^6*149*19073 in row p = 149 and the second is 228477376 = 2^6*167*21377 in row p = 167. %t A264104 mStalk[m_, bound_] := Module[{p=NextPrime[2^(m+1)], list={}}, While[2^m*p*(2^(m+1)*p+1)<=bound, If[PrimeQ[2^(m+1)*p+1], AppendTo[list, 2^m *p*(2^(m+1)*p+1)]]; p=NextPrime[p]]; list] %t A264104 a264104[bound_] := Module[{m=0, list={}}, While[2^m*NextPrime[2^(m+1)]*(2^(m+1)*NextPrime[2^(m+1)]+1)<=bound, list=Union[list, mStalk[m, bound]]; m++]; list] %t A264104 a264104[400000] (* data *) %Y A264104 Cf. A005384, A005385, A014105, A156592, A264102. %Y A264104 For symmetric representation of sigma: A235791, A236104, A237270, A237271, A237591, A237593, A241008, A246955. %K A264104 nonn,tabf %O A264104 1,1 %A A264104 _Hartmut F. W. Hoft_, Nov 03 2015