This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264117 #48 May 22 2025 10:21:43 %S A264117 23,55,87,94,119,178,271,312,335,403,501,551,598,717,861,861,903,1022, %T A264117 1119,1248,1463,1535,1688,2031,2067,2416,2535,2976,3064,3164,3407, %U A264117 3552,3552,4023,4143,4416,4633,4663,5424,5424,5688,6000,6455 %N A264117 Largest integer which cannot be partitioned using only parts from the set {perfect powers excluding the n smallest}. %C A264117 It appears, but has not been proved, that for n>28, a(n) < a(n-1) + A001597(n). %H A264117 Martin Y. Champel, <a href="/A264117/a264117_4.txt">Table of n, a(n) for n = 1..281</a> %e A264117 a(1) = 23 as 23 cannot be obtained by any combination of {4, 8, 9, 16} but the 4 following integers can: %e A264117 24 (6*4) a combination of {4, 8, 9, 16}, %e A264117 25 (1*25) a combination of {4, 8, 9, 16, 25}, %e A264117 26 (1*8+2*9) a combination of {4, 8, 9, 16, 25}, %e A264117 27 (1*27) a combination of {4, 8, 9, 16, 25, 27} so all following integers can. %e A264117 a(2) = 55 as 55 cannot be obtained by any combination of {8, 9, 16, 25, 27, 32, 36, 49} but the 8 following integers can. %e A264117 a(3) = 87 as 87 cannot be obtained by any combination of {9, 16, 25, 27, 32, 36, 49, 64, 81} but the 9 following integers can. %o A264117 (Python) # Python version 2.7 %o A264117 from copy import * %o A264117 from math import * %o A264117 sol ={} %o A264117 def a(n): %o A264117 global sol %o A264117 if n in sol: return sol[n] %o A264117 k = n**2 + 100 %o A264117 yt = sorted(list(set([b**a for a in range(2, 1+int(log(k)/log(2))) for b in range(1, 1+int(k**(1./a)))])))[n:] %o A264117 p0 = yt[0] %o A264117 if n-1 in sol and n > 28: p1 = sol[n-1] + 2 * p0 %o A264117 else: p1 = 7 * p0 + 400 %o A264117 yt = sorted(list(set([b**a for a in range(2, 1+int(log(p1)/log(2))) for b in range(1, 1+int(p1**(1./a)))])))[n:] %o A264117 st = [] %o A264117 while st != yt: %o A264117 st = deepcopy(yt) %o A264117 yt = sorted(list(set(yt + [i+j for i in yt for j in yt if i>=j if i+j < p1]))) %o A264117 d = 0 %o A264117 f = yt[0] + 1 %o A264117 t = f %o A264117 for i in range(1,len(yt)): %o A264117 if yt[i] == f: %o A264117 d += 1 %o A264117 f += 1 %o A264117 if d == yt[0] + 1: %o A264117 yt = yt[:yt.index(t+1)] %o A264117 sol[n] = yt.pop() + 1 %o A264117 return sol[n] %o A264117 else: %o A264117 t = f %o A264117 f = yt[i]+1 %o A264117 d = 0 %Y A264117 Cf. A001597. %K A264117 nonn %O A264117 1,1 %A A264117 _Martin Y. Champel_, Nov 03 2015