cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264131 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 0,2 or 1,2.

Original entry on oeis.org

1, 5, 1, 25, 13, 1, 80, 169, 34, 1, 256, 1040, 1156, 89, 1, 976, 6400, 13600, 7921, 233, 1, 3721, 53280, 160000, 178000, 54289, 610, 1, 13725, 443556, 2920000, 4000000, 2330000, 372100, 1597, 1, 50625, 3383280, 53290000, 160564000, 100000000
Offset: 1

Views

Author

R. H. Hardin, Nov 03 2015

Keywords

Comments

Table starts
.1.....5........25.........80.........256..........976.........3721
.1....13.......169.......1040........6400........53280.......443556
.1....34......1156......13600......160000......2920000.....53290000
.1....89......7921.....178000.....4000000....160564000...6445199524
.1...233.....54289....2330000...100000000...8830490000.779775536401
.1...610....372100...30500000..2500000000.485643650000
.1..1597...2550409..399250000.62500000000
.1..4181..17480761.5226250000
.1.10946.119814916
.1.28657

Examples

			Some solutions for n=4 k=4
..0..1..9..3..4....0..1..4..3..2....0..1..2..3..4....0..1..4..3..2
..7..8..5..6..2....5..8.14..6..9....5..8..7..6..9....7..8..5..6..9
.10.11.14.13.12...12.18.10.13..7...17.18.19.13.14...10.13.19.11.14
.15.16.24.18.19...15.16.19.11.17...15.23.10.11.12...22.18.15.16.12
.22.21.20.23.17...20.21.24.23.22...20.21.22.16.24...20.23.24.21.17
		

Crossrefs

Column 2 is A001519(n+2).
Column 3 is A081068(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 8*a(n-1) -8*a(n-2) +a(n-3)
k=4: a(n) = 15*a(n-1) -25*a(n-2)
k=5: a(n) = 25*a(n-1)
k=6: a(n) = 60*a(n-1) -300*a(n-2) +1500*a(n-3) -7500*a(n-4) +3125*a(n-5)
Empirical for row n:
n=1: a(n) = 4*a(n-1) -a(n-2) +15*a(n-4) -60*a(n-5) +15*a(n-6) -15*a(n-8) +60*a(n-9) -15*a(n-10) +a(n-12) -4*a(n-13) +a(n-14)