cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354044 a(n) = 2*(-i)^n*(n*sin(c*(n+1)) - i*sin(-c*n))/sqrt(5) where c = arccos(i/2).

Original entry on oeis.org

0, 2, 5, 11, 23, 45, 86, 160, 293, 529, 945, 1673, 2940, 5134, 8917, 15415, 26539, 45525, 77842, 132716, 225685, 382877, 648165, 1095121, 1846968, 3109850, 5228261, 8777315, 14716223, 24643389, 41220110, 68873848, 114964805, 191719849, 319436697, 531789785
Offset: 0

Views

Author

Peter Luschny, May 16 2022

Keywords

Crossrefs

Cf. A000045 (the Fibonacci numbers), A007502, A088209, A094588, A136391, A178521, A264147, A353595.

Programs

  • Julia
    function fibrec(n::Int)
        n == 0 && return (BigInt(0), BigInt(1))
        a, b = fibrec(div(n, 2))
        c = a * (b * 2 - a)
        d = a * a + b * b
        iseven(n) ? (c, d) : (d, c + d)
    end
    function A354044(n)
        n == 0 && return BigInt(0)
        a, b = fibrec(n + 1)
        a*(n - 1) + b
    end
    println([A354044(n) for n in 0:35])
    
  • Maple
    c := arccos(I/2): a := n -> 2*(-I)^n*(n*sin(c*(n+1)) - I*sin(-c*n))/sqrt(5):
    seq(simplify(a(n)), n = 0..35);
  • PARI
    a(n) = fibonacci(n) + n*fibonacci(n+1) \\ Jianing Song, May 16 2022

Formula

a(n) = [x^n] ((2 - x)*x*(x + 1))/(x^2 + x - 1)^2.
a(n) = (((-1 - sqrt(5))^(-n)*(sqrt(5)*n - n - 2) + (-1 + sqrt(5))^(-n)*(sqrt(5)*n + n + 2)))/(2^(1 - n)*sqrt(5)).
a(n) = (-1)^(n - 1)*(Fibonacci(-n) - n*Fibonacci(-n - 1)).
a(n) = (-1)^(n - 1)*A353595(-n, -n). (A353595 is defined for all n in Z.)
a(n) = ((-42*n^2 + 259*n - 350)*a(n - 3) + (123*n^2 - 76*n - 446)*a(n - 2) + (207*n^2 - 885*n + 412)*a(n - 1)) / ((165*n - 542)*(n - 1)) for n >= 4.
a(n) = Fibonacci(n) + n*Fibonacci(n+1). - Jianing Song, May 16 2022

A188538 Row sums of triangle A156070.

Original entry on oeis.org

1, 2, 2, 4, 6, 12, 23, 46, 90, 174, 330, 616, 1133, 2058, 3698, 6584, 11630, 20404, 35587, 61750, 106666, 183522, 314642, 537744, 916441, 1557842, 2642018, 4471276, 7552470, 12734364, 21436655, 36031486, 60478458, 101380758, 169740378, 283873144, 474246725
Offset: 0

Views

Author

N. J. A. Sloane, Apr 03 2011

Keywords

Programs

  • Maple
    with(combinat):A188538:=proc(n) local m,s;s:=1:for m from 1 to n do s:=s+1+fibonacci(n)-fibonacci(m)-fibonacci(n-m):od;return s;end: # Nathaniel Johnston, Apr 03 2011
  • PARI
    Vec(-(2*x^4-6*x^3+2*x^2+2*x-1)/((x-1)^2*(x^2+x-1)^2) + O(x^50)) \\ Colin Barker, Jul 11 2015

Formula

G.f.: -(2*x^4-6*x^3+2*x^2+2*x-1) / ((x-1)^2*(x^2+x-1)^2). - Colin Barker, Jul 11 2015
a(n) = n+3 +A264147(n+1) -A000032(n+1). - R. J. Mathar, Jun 02 2022

Extensions

Terms after a(10) from Nathaniel Johnston, Apr 03 2011
Showing 1-2 of 2 results.