This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264151 #23 May 25 2020 11:51:07 %S A264151 1,1,3,12,63,398,2911,24177,224824,2313892,26107679,320412404, %T A264151 4249353369,60561549764,923107802463,14985538729504,258138422935578, %U A264151 4702896016961154,90350619640638353,1825564783445799571,38700814850328413380,858915876402686598209,19916917035087719607321 %N A264151 Row sums of A179455. %H A264151 Vaclav Kotesovec, <a href="/A264151/b264151.txt">Table of n, a(n) for n = 0..447</a> %H A264151 Swapnil Garg, Alan Peng, <a href="https://arxiv.org/abs/2005.08889">Classical and consecutive pattern avoidance in rooted forests</a>, arXiv:2005.08889 [math.CO], May 2020. %H A264151 Peter Luschny, <a href="http://www.oeis.org/wiki/User:Peter_Luschny/PermutationTrees">Permutation Trees</a> %F A264151 a(n) = Sum_{k=0..n} (n-k+1)*A179454(n,k), where A179454(n,k) is read as a (0,0)-based table with an additional column (1,0,0,0,...) at the left hand side. %e A264151 a(4) = 5*0 + 4*1 + 3*14 + 2*8 + 1*1 = 63. %o A264151 (Sage) # uses[bell_transform from A264428] %o A264151 def A264151_list(len): %o A264151 b = [1]+[0]*(len-1); L = [b] %o A264151 for k in range(len): %o A264151 b = [sum((bell_transform(n, b))) for n in range(len)] %o A264151 L.append(b) %o A264151 return [sum(L[k][n] for k in (0..n)) for n in range(len)] %o A264151 print(A264151_list(10)) %Y A264151 Cf. A179454, A179455, A264428. %K A264151 nonn %O A264151 0,3 %A A264151 _Peter Luschny_, Dec 06 2015