cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A264157 Decimal expansion of M_7, the 7-dimensional analog of Madelung's constant (negated).

Original entry on oeis.org

2, 0, 1, 2, 4, 0, 5, 9, 8, 9, 7, 9, 7, 9, 8, 6, 0, 6, 4, 3, 9, 5, 0, 3, 0, 6, 3, 5, 8, 0, 4, 3, 0, 0, 4, 4, 1, 6, 5, 6, 7, 8, 0, 6, 5, 8, 1, 2, 1, 9, 2, 9, 3, 2, 8, 7, 8, 4, 9, 0, 4, 6, 9, 1, 1, 7, 3
Offset: 1

Views

Author

Jean-François Alcover, Nov 06 2015

Keywords

Examples

			-2.01240598979798606439503063580430044165678065812192932878490469117330...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.

Crossrefs

Programs

  • Mathematica
    digits = 32; f[n_, x_] := 1/Sqrt[Pi*x]*(EllipticTheta[4, 0, Exp[-x]]^n - 1); M[7] = NIntegrate[f[7, x], {x, 0, Infinity}, WorkingPrecision -> digits + 5]; RealDigits[M[7], 10, digits] // First
  • PARI
    th4(x)=1+2*sumalt(n=1,(-1)^n*x^n^2)
    intnum(x=0,[oo,1], (th4(exp(-x))^7-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016

Formula

Equals (1/sqrt(Pi))*Integral_{t=0..oo} ((Sum_{k=-oo..oo} (-1)^k*exp(-k^2*t))^7-1)/sqrt(t) dt.

Extensions

More terms from Charles R Greathouse IV, Jun 06 2016
Showing 1-1 of 1 results.