cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264165 3-smooth numbers whose number of divisors is 3-smooth.

This page as a plain text file.
%I A264165 #18 Apr 17 2025 08:08:20
%S A264165 1,2,3,4,6,8,9,12,18,24,27,32,36,54,72,96,108,128,216,243,256,288,384,
%T A264165 486,768,864,972,1152,1944,2048,2187,2304,3456,4374,6144,6561,6912,
%U A264165 7776,8748,13122,17496,18432,26244,31104,32768,52488,55296,62208,69984
%N A264165 3-smooth numbers whose number of divisors is 3-smooth.
%H A264165 Reinhard Zumkeller, <a href="/A264165/b264165.txt">Table of n, a(n) for n = 1..2000</a>
%F A264165 A065333(a(n)) * A065333(A000005(a(n))) = 1.
%F A264165 Sum_{n>=1} 1/a(n) = (Sum_{n>=1} 1/2^A069353(n)) * (Sum_{n>=1} 1/3^A069353(n)) = 2.85129093516260954847... . - _Amiram Eldar_, Apr 17 2025
%e A264165 a(25) = 768 = 2^8*3 = A003586(38) and A000005(768) = 18 = 2*3^2;
%e A264165 a(26) = 864 = 2^5*3^3 = A003586(39) and A000005(864) = 24 = 2^3*3;
%e A264165 a(27) = 972 = 2^2*3^5 = A003586(40) and A000005(972) = 18 = 2*3^2;
%e A264165 but A003586(41) = 1024 = 2^10 is not a term, as A000005(1024) = 11.
%t A264165 smQ[n_] := n == Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]);
%t A264165 seq[max_] := Sort@ Flatten@ Table[2^i * 3^j, {i, Select[Range[0, Floor[Log2[max]]], smQ[# + 1] &]}, {j, Select[Range[0, Floor[Log[3, max/2^i]]], smQ[# + 1] &]}]; seq[70000] (* _Amiram Eldar_, Sep 03 2023 *)
%o A264165 (Haskell)
%o A264165 a264165 n = a264165_list !! (n-1)
%o A264165 a264165_list = filter ((== 1) . a065333 . a000005') a003586_list
%Y A264165 Cf. A000005, A003586, A065333, A069353, A264164 (complement with respect to A003586).
%K A264165 nonn
%O A264165 1,2
%A A264165 _Reinhard Zumkeller_, Nov 19 2015