This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264200 #9 Jul 23 2025 15:39:15 %S A264200 0,1,5,19,69,235,789,2603,8533,27819,90453,293547,951637,3082923, %T A264200 9983317,32320171,104617301,338602667,1095849301,3546458795, %U A264200 11477013845,37141260971,120193373525,388957383339,1258699445589,4073250794155,13181344109909,42655780874923 %N A264200 Numerator of sum of numbers in set g(n) generated as in Comments. %C A264200 Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules: %C A264200 (1) if x is in g(n-1), then x + 1 is in g(n); and %C A264200 (2) if x is in g(n-1) and x < 2, then x/2 is in g(n). %C A264200 The sum of numbers in g(n) is a(n)/2^(n-1). %F A264200 Conjecture: a(n) = 3*a(n-1) + 4*a(n-2) - 8*a(n-3) - 8*a(n-4). %e A264200 g(0) = {0}, sum = 0. %e A264200 g(1) = {1}, sum = 1. %e A264200 g(2) = {1/2,2/1}, sum = 5/4. %e A264200 g(3) = {1/4,3/2,3/1}, sum = 19/8. %t A264200 z = 30; x = 1/2; g[0] = {0}; g[1] = {1}; %t A264200 g[n_] := g[n] = Union[1 + g[n - 1], (1/2) Select[g[n - 1], # < 2 &]] %t A264200 Table[g[n], {n, 0, z}]; Table[Total[g[n]], {n, 0, z}] %t A264200 Numerator[Table[Total[g[n]], {n, 0, z}] ] %Y A264200 Cf. A054123, A054124, A264201. %K A264200 nonn,easy %O A264200 0,3 %A A264200 _Clark Kimberling_, Nov 09 2015