cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264200 Numerator of sum of numbers in set g(n) generated as in Comments.

This page as a plain text file.
%I A264200 #9 Jul 23 2025 15:39:15
%S A264200 0,1,5,19,69,235,789,2603,8533,27819,90453,293547,951637,3082923,
%T A264200 9983317,32320171,104617301,338602667,1095849301,3546458795,
%U A264200 11477013845,37141260971,120193373525,388957383339,1258699445589,4073250794155,13181344109909,42655780874923
%N A264200 Numerator of sum of numbers in set g(n) generated as in Comments.
%C A264200 Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules:
%C A264200 (1)  if x is in g(n-1), then x + 1 is in g(n); and
%C A264200 (2)  if x is in g(n-1) and x < 2, then x/2 is in g(n).
%C A264200 The sum of numbers in g(n) is a(n)/2^(n-1).
%F A264200 Conjecture: a(n) = 3*a(n-1) + 4*a(n-2) - 8*a(n-3) - 8*a(n-4).
%e A264200 g(0) = {0}, sum = 0.
%e A264200 g(1) = {1}, sum = 1.
%e A264200 g(2) = {1/2,2/1}, sum = 5/4.
%e A264200 g(3) = {1/4,3/2,3/1}, sum = 19/8.
%t A264200 z = 30; x = 1/2; g[0] = {0}; g[1] = {1};
%t A264200 g[n_] := g[n] = Union[1 + g[n - 1], (1/2) Select[g[n - 1], # < 2 &]]
%t A264200 Table[g[n], {n, 0, z}]; Table[Total[g[n]], {n, 0, z}]
%t A264200 Numerator[Table[Total[g[n]], {n, 0, z}] ]
%Y A264200 Cf. A054123, A054124, A264201.
%K A264200 nonn,easy
%O A264200 0,3
%A A264200 _Clark Kimberling_, Nov 09 2015