cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264201 Numerator of sum of numbers in set g(n) generated as in Comments.

This page as a plain text file.
%I A264201 #10 Jul 23 2025 15:39:20
%S A264201 0,1,7,46,265,1519,8560,47578,264076,1461439,8075011,44596708,
%T A264201 246189961,1358762089,7498499272,41378660380,228330571360,
%U A264201 1259923712821,6952163820391,38361311420962,211673092313329,1167984733037851,6444783128779528,35561432547881926
%N A264201 Numerator of sum of numbers in set g(n) generated as in Comments.
%C A264201 Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules:
%C A264201 (1)  if x is in g(n-1), then x + 1 is in g(n); and
%C A264201 (2)  if x is in g(n-1) and x < 3, then x/3 is in g(n).
%C A264201 The sum of numbers in g(n) is a(n)/3^(n-1).
%F A264201 Conjecture: a(n) = 4*a(n-1) + 9*a(n-2) + 18*a(n-3) - 81*a(n-4) - 162*a(n-5) - 243*a(n-6).
%e A264201 g(0) = {0}, sum = 0.
%e A264201 g(1) = {1}, sum = 1.
%e A264201 g(2) = {1/3,2/1}, sum = 7/3.
%e A264201 g(3) = {1/9,2/3,4/3,3/1}, sum = 46/9.
%t A264201 z = 5; x = 1/3;  g[0] = {0}; g[1] = {1};
%t A264201 g[n_] := g[n] = Union[1 + g[n - 1], (1/3) Select[g[n - 1], # < 3 &]]
%t A264201 Table[g[n], {n, 0, z}]
%t A264201 Table[Total[g[n]], {n, 0, z}]
%t A264201 u = Numerator[Table[Total[g[n]], {n, 0, z}] ]
%Y A264201 Cf. A264200.
%K A264201 nonn,easy
%O A264201 0,3
%A A264201 _Clark Kimberling_, Nov 09 2015