cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264263 The number of distinct nontrivial integral cevians of an isosceles triangle, with base of length 1 and legs of length n, that divide the base into two integral parts.

This page as a plain text file.
%I A264263 #13 Dec 10 2016 19:39:43
%S A264263 0,1,1,2,2,1,3,3,1,3,3,2,5,3,1,3,7,3,3,3,1,5,5,2,5,3,3,7,3,1,5,11,3,3,
%T A264263 3,1,5,11,3,4,4,3,7,3,3,7,7,3,5,5,1,7,7,1,3,3,3,11,11,5,5,7,3,3,3,3,
%U A264263 15,7,1,3,7,7,11,5,1,5,11,3,3,7,3,7,7,2
%N A264263 The number of distinct nontrivial integral cevians of an isosceles triangle, with base of length 1 and legs of length n, that divide the base into two integral parts.
%C A264263 A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension).
%C A264263 A nontrivial cevian is one that does not coincide with a side of the triangle.
%C A264263 If a(n) = 1 then the length of the unique cevian is n^2.
%C A264263 It seems that a(n) = 1 if and only if n is the average of twin prime pairs divided by 2 (A040040).
%H A264263 Colin Barker, <a href="/A264263/b264263.txt">Table of n, a(n) for n = 1..1000</a>
%H A264263 Wikipedia, <a href="http://en.wikipedia.org/wiki/Cevian">Cevian</a>
%H A264263 Wikipedia, <a href="http://en.wikipedia.org/wiki/Isosceles_triangle">Isosceles triangle</a>
%e A264263 a(4) = 2 because for legs of length 4 there are two cevians, of length 6 and 16, that divide the base into two integral parts.
%o A264263 (PARI)
%o A264263 ceviso(n) = {
%o A264263   my(d, L=List());
%o A264263   for(k=1, n^2,
%o A264263     if(issquare(n^2+k^2-k, &d) && d!=n,
%o A264263       listput(L, d)
%o A264263     )
%o A264263   );
%o A264263   Vec(L)
%o A264263 }
%o A264263 vector(100, n, #ceviso(n))
%Y A264263 Cf. A040040, A264264.
%K A264263 nonn,easy
%O A264263 1,4
%A A264263 _Colin Barker_, Nov 10 2015