This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264263 #13 Dec 10 2016 19:39:43 %S A264263 0,1,1,2,2,1,3,3,1,3,3,2,5,3,1,3,7,3,3,3,1,5,5,2,5,3,3,7,3,1,5,11,3,3, %T A264263 3,1,5,11,3,4,4,3,7,3,3,7,7,3,5,5,1,7,7,1,3,3,3,11,11,5,5,7,3,3,3,3, %U A264263 15,7,1,3,7,7,11,5,1,5,11,3,3,7,3,7,7,2 %N A264263 The number of distinct nontrivial integral cevians of an isosceles triangle, with base of length 1 and legs of length n, that divide the base into two integral parts. %C A264263 A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). %C A264263 A nontrivial cevian is one that does not coincide with a side of the triangle. %C A264263 If a(n) = 1 then the length of the unique cevian is n^2. %C A264263 It seems that a(n) = 1 if and only if n is the average of twin prime pairs divided by 2 (A040040). %H A264263 Colin Barker, <a href="/A264263/b264263.txt">Table of n, a(n) for n = 1..1000</a> %H A264263 Wikipedia, <a href="http://en.wikipedia.org/wiki/Cevian">Cevian</a> %H A264263 Wikipedia, <a href="http://en.wikipedia.org/wiki/Isosceles_triangle">Isosceles triangle</a> %e A264263 a(4) = 2 because for legs of length 4 there are two cevians, of length 6 and 16, that divide the base into two integral parts. %o A264263 (PARI) %o A264263 ceviso(n) = { %o A264263 my(d, L=List()); %o A264263 for(k=1, n^2, %o A264263 if(issquare(n^2+k^2-k, &d) && d!=n, %o A264263 listput(L, d) %o A264263 ) %o A264263 ); %o A264263 Vec(L) %o A264263 } %o A264263 vector(100, n, #ceviso(n)) %Y A264263 Cf. A040040, A264264. %K A264263 nonn,easy %O A264263 1,4 %A A264263 _Colin Barker_, Nov 10 2015