cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264264 The length of the shortest nontrivial integral cevian of an isosceles triangle, with base of length 1 and legs of length n, that divides the base into two integral parts.

This page as a plain text file.
%I A264264 #10 Dec 10 2016 19:40:12
%S A264264 4,9,6,9,36,11,14,81,16,19,30,15,24,225,26,19,48,31,34,441,36,39,84,
%T A264264 35,44,69,32,49,900,51,34,87,56,59,1296,61,40,141,66,69,108,49,74,159,
%U A264264 64,53,126,81,84,2601,86,89,2916,91,94,147,66,61,66,101,70,165
%N A264264 The length of the shortest nontrivial integral cevian of an isosceles triangle, with base of length 1 and legs of length n, that divides the base into two integral parts.
%C A264264 A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension).
%C A264264 A nontrivial cevian is one that does not coincide with a side of the triangle.
%C A264264 For all n, the longest nontrivial integral cevian has length n^2.
%H A264264 Colin Barker, <a href="/A264264/b264264.txt">Table of n, a(n) for n = 2..1000</a>
%H A264264 Wikipedia, <a href="http://en.wikipedia.org/wiki/Cevian">Cevian</a>
%H A264264 Wikipedia, <a href="http://en.wikipedia.org/wiki/Isosceles_triangle">Isosceles triangle</a>
%e A264264 a(4) = 6 because for legs of length 4 there are two cevians, of length 6 and 16, that divide the base into two integral parts.
%o A264264 (PARI)
%o A264264 ceviso(n) = {
%o A264264   my(d, L=List());
%o A264264   for(k=1, n^2,
%o A264264     if(issquare(n^2+k^2-k, &d) && d!=n,
%o A264264       listput(L, d)
%o A264264     )
%o A264264   );
%o A264264   Vec(L)
%o A264264 }
%o A264264 vector(100, n, n++; ceviso(n)[1])
%Y A264264 Cf. A264263.
%K A264264 nonn,easy
%O A264264 2,1
%A A264264 _Colin Barker_, Nov 10 2015