A262841
Number of irreducible polynomials occurring as the first component of a vertex in the Fibonacci zero tree, generated as in Comments.
Original entry on oeis.org
0, 0, 1, 2, 3, 5, 8, 11, 21, 28, 54, 68, 135, 183, 360, 470, 948, 1234, 2479, 3294, 6531, 8713, 17120, 23200
Offset: 0
First few generations:
g(0) = {(0,0)}
g(1) = {(0,2), (1,0)}
g(2) = {(0,3), (2,0), (0,x)}
g(3) = {(0,4), (3,0), (0,2x), (0,1+x), (x,0)}
g(4) = {(0,5), (4,0), (0,3x), (0,1+2x), (2x,0), (0,2+x), (1+x,0), (0,x^2)}
-
z = 20; g = {{{0, 0}}};
Do[AppendTo[g, DeleteDuplicates[Partition[Flatten[Join[g, Map[# /. {{0, k_} -> {{0, k + 1}, {k, 0}}, {k_, 0} -> {0, x*k}} &, g]]], 2]]], {z}]
t = Table[Drop[g[[k + 1]], Length[g[[k]]]], {k, Length[g] - 1}];
Map[Length, t] (* Fibonacci numbers *)
Map[Count[IrreduciblePolynomialQ[#], {_, True}] &, t]
(* Peter J. C. Moses, Oct 19 2015 *)
A264293
Number of irreducible polynomials in the n-th generation of polynomials generated as in Comments.
Original entry on oeis.org
0, 0, 2, 4, 9, 20, 54, 131, 354, 912, 2457, 6429, 17081, 44850, 118578, 311471
Offset: 0
First few generations:
g(0) = {0}
g(1) = {1}
g(2) = {2,x,y}
g(3) = {3, 2x, x^2, 1+x, 2y, xy, y^2, 1+y}
The irreducible polynomials in g(3) are 2x, 1+x, 2y, 1+y, so that a(3) = 4.
-
A[0]:= 0: A[1]:= 0:
T:= {1}:
for n from 2 to 13 do
T:= map(t -> (t+1,expand(x*t),expand(y*t)),T);
A[n]:= nops(select(irreduc,T));
od:
seq(A[i],i=0..13); # Robert Israel, Nov 22 2018
-
z = 12; t = Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#, y*#} &, #], 1]] &, {0}, z]];
s[0] = t[[1]]; s[n_] := s[n] = Union[t[[n]], s[n - 1]]
g[n_] := Complement[s[n], s[n - 1]]
Table[Length[g[z]], {z, 1, z}]
Column[Table[g[z], {z, 1, 6}]]
Table[Count[Map[IrreduciblePolynomialQ, g[n]], True], {n, 1, z}]
Showing 1-2 of 2 results.
Comments