A264293 Number of irreducible polynomials in the n-th generation of polynomials generated as in Comments.
0, 0, 2, 4, 9, 20, 54, 131, 354, 912, 2457, 6429, 17081, 44850, 118578, 311471
Offset: 0
Examples
First few generations: g(0) = {0} g(1) = {1} g(2) = {2,x,y} g(3) = {3, 2x, x^2, 1+x, 2y, xy, y^2, 1+y} The irreducible polynomials in g(3) are 2x, 1+x, 2y, 1+y, so that a(3) = 4.
Programs
-
Maple
A[0]:= 0: A[1]:= 0: T:= {1}: for n from 2 to 13 do T:= map(t -> (t+1,expand(x*t),expand(y*t)),T); A[n]:= nops(select(irreduc,T)); od: seq(A[i],i=0..13); # Robert Israel, Nov 22 2018
-
Mathematica
z = 12; t = Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#, y*#} &, #], 1]] &, {0}, z]]; s[0] = t[[1]]; s[n_] := s[n] = Union[t[[n]], s[n - 1]] g[n_] := Complement[s[n], s[n - 1]] Table[Length[g[z]], {z, 1, z}] Column[Table[g[z], {z, 1, 6}]] Table[Count[Map[IrreduciblePolynomialQ, g[n]], True], {n, 1, z}]
Extensions
Edited, and a(12)-a(15) from Robert Israel, Nov 22 2018
Comments