cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264341 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 0,1 or 1,2.

Original entry on oeis.org

4, 13, 8, 49, 55, 16, 181, 490, 233, 32, 676, 3567, 4900, 987, 64, 2521, 28925, 70669, 49000, 4181, 128, 9409, 223356, 1243225, 1399783, 490000, 17711, 256, 35113, 1759250, 20386617, 53429620, 27726581, 4900000, 75025, 512, 131044, 13750304
Offset: 1

Views

Author

R. H. Hardin, Nov 11 2015

Keywords

Comments

Table starts
....4......13.........49...........181..............676.................2521
....8......55........490..........3567............28925...............223356
...16.....233.......4900.........70669..........1243225.............20386617
...32.....987......49000.......1399783.........53429620...........1855980772
...64....4181.....490000......27726581.......2296230561.........168990466353
..128...17711....4900000.....549201567......98684484373.......15386771913704
..256...75025...49000000...10878455069....4241136597604.....1400983500645217
..512..317811..490000000..215477871383..182270189212469...127561175981852920
.1024.1346269.4900000000.4268134837381.7833376999538689.11614593343457551705

Examples

			Some solutions for n=3 k=4
..7..8..9..3..4....1..0..3..2..4....7..8..2..3..4....1..2..9..4..3
.12..5..0..1..2...12..6..7..9..8....5..6..0..1..9...12..6..0..7..8
.17.10.13..6.14...11.10..5.14.13...11.10.12.13.14...10.18..5.14.13
.15.16.18.11.19...16.15.17.18.19...15.17.16.18.19...15.17.16.11.19
		

Crossrefs

Column 1 is A000079(n+1).
Column 2 is A033887(n+1).
Row 1 is A097948.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) +a(n-2)
k=3: a(n) = 10*a(n-1)
k=4: a(n) = 19*a(n-1) +16*a(n-2)
k=5: a(n) = 43*a(n-1) -43*a(n-3) +a(n-4)
k=6: a(n) = 87*a(n-1) +374*a(n-2) -470*a(n-3) +207*a(n-4) +3*a(n-5)
k=7: a(n) = 191*a(n-1) +1102*a(n-2) -7594*a(n-3) -38349*a(n-4) +38507*a(n-5)
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-3) +a(n-4)
n=2: [order 14]
n=3: [order 34]