A264341 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 0,1 or 1,2.
4, 13, 8, 49, 55, 16, 181, 490, 233, 32, 676, 3567, 4900, 987, 64, 2521, 28925, 70669, 49000, 4181, 128, 9409, 223356, 1243225, 1399783, 490000, 17711, 256, 35113, 1759250, 20386617, 53429620, 27726581, 4900000, 75025, 512, 131044, 13750304
Offset: 1
Examples
Some solutions for n=3 k=4 ..7..8..9..3..4....1..0..3..2..4....7..8..2..3..4....1..2..9..4..3 .12..5..0..1..2...12..6..7..9..8....5..6..0..1..9...12..6..0..7..8 .17.10.13..6.14...11.10..5.14.13...11.10.12.13.14...10.18..5.14.13 .15.16.18.11.19...16.15.17.18.19...15.17.16.18.19...15.17.16.11.19
Links
- R. H. Hardin, Table of n, a(n) for n = 1..143
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) +a(n-2)
k=3: a(n) = 10*a(n-1)
k=4: a(n) = 19*a(n-1) +16*a(n-2)
k=5: a(n) = 43*a(n-1) -43*a(n-3) +a(n-4)
k=6: a(n) = 87*a(n-1) +374*a(n-2) -470*a(n-3) +207*a(n-4) +3*a(n-5)
k=7: a(n) = 191*a(n-1) +1102*a(n-2) -7594*a(n-3) -38349*a(n-4) +38507*a(n-5)
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-3) +a(n-4)
n=2: [order 14]
n=3: [order 34]
Comments