cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264357 Array A(r, n) of number of independent components of a symmetric traceless tensor of rank r and dimension n, written as triangle T(n, r) = A(r, n-r+2), n >= 1, r = 2..n+1.

This page as a plain text file.
%I A264357 #40 Jul 26 2023 14:32:45
%S A264357 0,2,0,5,2,0,9,7,2,0,14,16,9,2,0,20,30,25,11,2,0,27,50,55,36,13,2,0,
%T A264357 35,77,105,91,49,15,2,0,44,112,182,196,140,64,17,2,0,54,156,294,378,
%U A264357 336,204,81,19,2,0
%N A264357 Array A(r, n) of number of independent components of a symmetric traceless tensor of rank r and dimension n, written as triangle T(n, r) = A(r, n-r+2), n >= 1, r = 2..n+1.
%C A264357 A (totally) symmetric traceless tensor of rank r >= 2 and dimension n >= 1 is irreducible.
%C A264357 The array of the number of independent components of a rank r symmetric traceless tensor A(r, n), for r >= 2 and n >=1, is given by risefac(n,r)/r! - risefac(n,r-2)/(r-2)!, where the first term gives the number of independent components of a symmetric tensors of rank r (see a Dec 10 2015 comment under A135278) and the second term is the number of constraints from the tracelessness requirement. The tensor has to be traceless in each pair of indices.
%C A264357 The first rows of the array A, or the first columns (without the first r-2 zeros) of the triangle T are for r = 2..6: A000096, A005581, A005582, A005583, A005584.
%C A264357 Equals A115241 with the first column of positive integers removed. - _Georg Fischer_, Jul 26 2023
%F A264357 T(n, r) = A(r, n-r+2) with the array A(r, n) = risefac(n,r)/r! - risefac(n,r-2)/(r-2)! where the rising factorial risefac(n,k) = Product_{j=0..k-1} (n+j) and risefac(n,0) = 1.
%F A264357 From _Peter Luschny_, Dec 14 2015: (Start)
%F A264357 A(n+2, n+1) = A007946(n-1) = CatalanNumber(n)*3*n*(n+1)/(n+2) for n>=0.
%F A264357 A(n+2, n+2) = A024482(n+2) = A097613(n+2) = CatalanNumber(n+1)*(3*n+4)/2 for n>=0.
%F A264357 A(n+2, n+3) = A051960(n+1) = CatalanNumber(n+1)*(3*n+5) for n>=0.
%F A264357 A(n+2, n+4) = A029651(n+2) = CatalanNumber(n+1)*(6*n+9) for n>=0.
%F A264357 A(n+2, n+5) = A051924(n+3) = CatalanNumber(n+2)*(3*n+7) for n>=0.
%F A264357 A(n+2, n+6) = A129869(n+4) = CatalanNumber(n+2)*(3*n+8)*(2*n+5)/(n+4) for n>=0.
%F A264357 A(n+2, n+7) = A220101(n+4) = CatalanNumber(n+3)*(3*(n+3)^2)/(n+5) for n>=0.
%F A264357 A(n+2, n+8) = CatalanNumber(n+4)*(n+3)*(3*n+10)/(2*n+12) for n>=0.
%F A264357 Let for n>=0 and k>=0 diag(n,k) = A(k+2,n+k+1) and G(n,k) = 2^(k+2*n)*Gamma((3-(-1)^k+2*k+4*n)/4)/(sqrt(Pi)*Gamma(k+n+0^k)) then
%F A264357 diag(n,0) = G(n,0)*(n*3)/(n+2),
%F A264357 diag(n,1) = G(n,1)*(3*n+4)/((n+1)*(n+2)),
%F A264357 diag(n,2) = G(n,2)*(3*n+5)/(n+2),
%F A264357 diag(n,3) = G(n,3)*3,
%F A264357 diag(n,4) = G(n,4)*(3*n+7),
%F A264357 diag(n,5) = G(n,5)*(3*n+8),
%F A264357 diag(n,6) = G(n,6)*3*(3+n)^2,
%F A264357 diag(n,7) = G(n,7)*(3+n)*(10+3*n). (End)
%e A264357 The array A(r, n) starts:
%e A264357    r\n 1 2  3   4   5    6    7     8     9    10 ...
%e A264357    2:  0 2  5   9  14   20   27    35    44    54
%e A264357    3:  0 2  7  16  30   50   77   112   156   210
%e A264357    4:  0 2  9  25  55  105  182   294   450   660
%e A264357    5:  0 2 11  36  91  196  378   672  1122  1782
%e A264357    6:  0 2 13  49 140  336  714  1386  2508  4290
%e A264357    7:  0 2 15  64 204  540 1254  2640  5148  9438
%e A264357    8:  0 2 17  81 285  825 2079  4719  9867 19305
%e A264357    9:  0 2 19 100 385 1210 3289  8008 17875 37180
%e A264357   10:  0 2 21 121 506 1716 5005 13013 30888 68068
%e A264357   ...
%e A264357 The triangle T(n, r) starts:
%e A264357    n\r  2   3   4   5   6   7  8  9 10 11 ...
%e A264357    1:   0
%e A264357    2:   2   0
%e A264357    3:   5   2   0
%e A264357    4:   9   7   2   0
%e A264357    5:  14  16   9   2   0
%e A264357    6:  20  30  25  11   2   0
%e A264357    7:  27  50  55  36  13   2  0
%e A264357    8:  35  77 105  91  49  15  2  0
%e A264357    9:  44 112 182 196 140  64 17  2  0
%e A264357   10:  54 156 294 378 336 204 81 19  2  0
%e A264357   ...
%e A264357 A(r, 1) = 0 , r >= 2, because a symmetric rank r tensor t of dimension one has one component t(1,1,...,1) (r 1's) and if the traces vanish then t vanishes.
%e A264357 A(3, 2) = 2 because a symmetric rank 3 tensor t with three indices taking values from 1 or 2 (n=2) has the four independent components t(1,1,1), t(1,1,2), t(1,2,2), t(2,2,2), and (invoking symmetry) the vanishing traces are Sum_{j=1..2} t(j,j,1) = 0 and Sum_{j=1..2} t(j,j,2) = 0. These are two constraints, which can be used to eliminate, say, t(1,1,1) and t(2,2,2), leaving 2 = A(3, 2) independent components, say, t(1,1,2) and t(1,2,2).
%e A264357 From _Peter Luschny_, Dec 14 2015: (Start)
%e A264357 The diagonals diag(n, k) start:
%e A264357    k\n  0       1       2       3       4      5       6
%e A264357    0:   0,      2,      9,     36,    140,   540,   2079, ... A007946
%e A264357    1:   2,      7,     25,     91,    336,  1254,   4719, ... A097613
%e A264357    2:   5,     16,     55,    196,    714,  2640,   9867, ... A051960
%e A264357    3:   9,     30,    105,    378,   1386,  5148,  19305, ... A029651
%e A264357    4:  14,     50,    182,    672,   2508,  9438,  35750, ... A051924
%e A264357    5:  20,     77,    294,   1122,   4290, 16445,  63206, ... A129869
%e A264357    6:  27,    112,    450,   1782,   7007, 27456, 107406, ... A220101
%e A264357    7:  35,    156,    660,   2717,  11011, 44200, 176358, ... A265612
%e A264357    8:  44,    210,    935,    4004, 16744, 68952, 281010, ... A265613
%e A264357   A000096,A005581,A005582,A005583,A005584.
%e A264357 (End)
%t A264357 A[r_, n_] := Pochhammer[n, r]/r! - Pochhammer[n, r-2]/(r-2)!;
%t A264357 T[n_, r_] := A[r, n-r+2];
%t A264357 Table[T[n, r], {n, 1, 10}, {r, 2, n+1}] (* _Jean-François Alcover_, Jun 28 2019 *)
%o A264357 (Sage)
%o A264357 A = lambda r, n: rising_factorial(n,r)/factorial(r) - rising_factorial(n,r-2)/factorial(r-2)
%o A264357 for r in (2..10): [A(r,n) for n in (1..10)] # _Peter Luschny_, Dec 13 2015
%Y A264357 Cf. A000096, A005581, A005582, A005583, A005584, A007946, A024482, A029651, A051924, A051960, A097613, A115241, A129869, A135278, A220101, A265612, A265613.
%K A264357 nonn,easy,tabl
%O A264357 1,2
%A A264357 _Wolfdieter Lang_, Dec 10 2015