cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264380 Number of (2+1) X (n+1) arrays of permutations of 0..n*3+2 with each element having directed index change 2,-2 -1,0 -1,2 1,0 or 0,-1.

Original entry on oeis.org

0, 1, 6, 9, 61, 121, 544, 1357, 5100, 14340, 49324, 147230, 485141, 1491460, 4812843, 15012153, 47950974, 150636184, 478755674, 1509249756, 4785018013, 15110309428, 47849311565, 151226992088, 478604645313, 1513243349293, 4787751445331
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2015

Keywords

Examples

			Some solutions for n=4:
..1..6..5..4..7....1..2..3..8..7....5..6..3..8..7....5..2..3..8..7
..0.11.10..3.14....0.11.10.13.12....0..1.10.11..4....0..1.10.13.12
..2.12.13..8..9....5..6..4.14..9....2.12.13.14..9...11..6..4.14..9
		

Crossrefs

Row 2 of A264379.

Formula

Empirical: a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) + 7*a(n-4) - 4*a(n-5) - a(n-6) + 5*a(n-7) - 4*a(n-8) + 2*a(n-9) - a(n-10).
Empirical g.f.: x^2*(1 + 4*x - 8*x^2 + 19*x^3 - 17*x^4 + 13*x^5 - 8*x^6 + 2*x^7 - x^8) / (1 - 2*x - 5*x^2 + 6*x^3 - 7*x^4 + 4*x^5 + x^6 - 5*x^7 + 4*x^8 - 2*x^9 + x^10). - Colin Barker, Jan 07 2019