A264388 Numerators of binomial(n-1, 2)/(6*n), for n >= 1. Numerators of Dedekind sum s(1, n).
0, 0, 1, 1, 1, 5, 5, 7, 14, 3, 15, 55, 11, 13, 91, 35, 20, 34, 51, 57, 95, 35, 77, 253, 46, 25, 325, 117, 63, 203, 145, 155, 248, 44, 187, 595, 105, 111, 703, 247, 130, 205, 287, 301, 473, 165, 345, 1081, 188, 98, 1225, 425, 221, 689, 477, 495, 770, 133, 551
Offset: 1
References
- Apostol, Tom, M., Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990.
Links
- Eric Weisstein's World of Mathematics, Dedekind Sum.
Programs
-
Julia
using Nemo A264388(n) = numerator(dedekind_sum(1, n)) [A264388(n) for n in 1:70] |> println # Peter Luschny, Mar 13 2018
Formula
a(n) = numerator(binomial(n-1, 2)/(6*n)) (in lowest terms), n >= 1.
a(n) = numerator(r(n)), with r(n) = s(1,n) = Sum_{r=1..(n-1)} (r/n)*(r/n - floor(r/n)- 1/2), n >= 1. For other forms see the above comments.
Comments