This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264392 #17 Nov 14 2020 06:25:49 %S A264392 0,1,2,4,7,12,19,30,46,68,99,142,200,279,384,523,707,946,1256,1656, %T A264392 2169,2822,3652,4699,6017,7666,9725,12282,15452,19362,24176,30080, %U A264392 37307,46117,56843,69854,85613,104640,127578,155150,188249,227872,275242,331738,399027,478988 %N A264392 Number of perfect cube parts in all partitions of n. %C A264392 a(n) = Sum_{k=0..n} k*A264391(n,k). %H A264392 Alois P. Heinz, <a href="/A264392/b264392.txt">Table of n, a(n) for n = 0..1000</a> %F A264392 G.f.: ( Sum_{i>0} x^(h(i))/(1-x^(h(i))) ) / ( Product_{i>0} 1-x^i ), where h(i) = i^3. %e A264392 a(4) = 7 because the partitions of 4 are [4],[3,1'],[2,2],[2,1',1'], and [1',1',1',1'], where the perfect cube parts are marked. %p A264392 h := proc (i) options operator, arrow: i^3 end proc: g := (sum(x^h(i)/(1-x^h(i)), i = 1 .. 100))/(product(1-x^i, i = 1 .. 100)): hser := series(g, x = 0, 55): seq(coeff(hser, x, n), n = 0 .. 50); %t A264392 cnt[P_List] := Count[P, p_ /; IntegerQ[p^(1/3)]]; %t A264392 a[n_] := a[n] = cnt /@ IntegerPartitions[n] // Total; %t A264392 Table[Print[n, " ", a[n]]; a[n], {n, 0, 50}]; %t A264392 (* or: *) %t A264392 m = 50; %t A264392 CoefficientList[Sum[x^(i^3)/(1 - x^(i^3)), {i, 1, m^(1/3) // Ceiling}]/ Product[1 - x^i, {i, 1, m}] + O[x]^m, x] (* _Jean-François Alcover_, Nov 14 2020 *) %Y A264392 Cf. A264391. %K A264392 nonn %O A264392 0,3 %A A264392 _Emeric Deutsch_, Nov 13 2015