cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264392 Number of perfect cube parts in all partitions of n.

This page as a plain text file.
%I A264392 #17 Nov 14 2020 06:25:49
%S A264392 0,1,2,4,7,12,19,30,46,68,99,142,200,279,384,523,707,946,1256,1656,
%T A264392 2169,2822,3652,4699,6017,7666,9725,12282,15452,19362,24176,30080,
%U A264392 37307,46117,56843,69854,85613,104640,127578,155150,188249,227872,275242,331738,399027,478988
%N A264392 Number of perfect cube parts in all partitions of n.
%C A264392 a(n) = Sum_{k=0..n} k*A264391(n,k).
%H A264392 Alois P. Heinz, <a href="/A264392/b264392.txt">Table of n, a(n) for n = 0..1000</a>
%F A264392 G.f.: ( Sum_{i>0} x^(h(i))/(1-x^(h(i))) ) / ( Product_{i>0} 1-x^i ), where h(i) = i^3.
%e A264392 a(4) = 7 because the partitions of 4 are [4],[3,1'],[2,2],[2,1',1'], and  [1',1',1',1'], where the perfect cube parts are marked.
%p A264392 h := proc (i) options operator, arrow: i^3 end proc: g := (sum(x^h(i)/(1-x^h(i)), i = 1 .. 100))/(product(1-x^i, i = 1 .. 100)): hser := series(g, x = 0, 55): seq(coeff(hser, x, n), n = 0 .. 50);
%t A264392 cnt[P_List] := Count[P, p_ /; IntegerQ[p^(1/3)]];
%t A264392 a[n_] := a[n] = cnt /@ IntegerPartitions[n] // Total;
%t A264392 Table[Print[n, " ", a[n]]; a[n], {n, 0, 50}];
%t A264392 (* or: *)
%t A264392 m = 50;
%t A264392 CoefficientList[Sum[x^(i^3)/(1 - x^(i^3)), {i, 1, m^(1/3) // Ceiling}]/ Product[1 - x^i, {i, 1, m}] + O[x]^m, x] (* _Jean-François Alcover_, Nov 14 2020 *)
%Y A264392 Cf. A264391.
%K A264392 nonn
%O A264392 0,3
%A A264392 _Emeric Deutsch_, Nov 13 2015