cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264393 Number of partitions of n having no perfect cube parts (n>=0).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 8, 11, 13, 19, 22, 30, 37, 48, 58, 76, 91, 116, 141, 176, 212, 265, 317, 390, 468, 571, 681, 828, 983, 1185, 1407, 1685, 1993, 2378, 2802, 3326, 3913, 4624, 5421, 6387, 7466, 8762, 10223, 11955, 13910, 16225, 18831, 21898, 25365
Offset: 0

Views

Author

Emeric Deutsch, Nov 13 2015

Keywords

Comments

a(n) = A264391(n,0).
Convolution of A279484 and A000041. - Vaclav Kotesovec, Dec 30 2016

Examples

			a(7) = 4 because we have [7], [5,2], [4,3], and [3,2,2].
		

Crossrefs

Programs

  • Maple
    h := proc (i) options operator, arrow; i^3 end proc: g := product((1-x^h(i))/(1-x^i), i = 1 .. 150): gser := series(g, x = 0, 65): seq(coeff(gser, x, n), n = 0 .. 60);
  • Mathematica
    nmax=100; CoefficientList[Series[Product[(1-x^(k^3))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 30 2016 *)

Formula

G.f.: Product_{i>=1}(1-x^(h(i)))/(1-x^i), where h(i) = i^3.
a(n) ~ exp(Pi*sqrt(2*n/3) - 2^(1/6) * Gamma(1/3) * Zeta(4/3) * n^(1/6) / (3^(5/6) * Pi^(1/3))) * Pi / (6^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016