This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264397 #11 Sep 17 2023 18:28:19 %S A264397 1,3,5,10,15,26,38,60,86,127,178,255,349,484,652,885,1174,1565,2049, %T A264397 2689,3481,4510,5779,7407,9403,11933,15029,18908,23636,29511,36641, %U A264397 45432,56063,69076,84753,103833,126730,154438,187584,227485,275056,332066,399811 %N A264397 Sum of the sizes of the longest clique of all partitions of n. %C A264397 All parts of an integer partition with the same value form a clique. The size of a clique is the number of elements in the clique. %C A264397 a(n) = Sum(k*A091602(n,k), k=1..n). %H A264397 Alois P. Heinz, <a href="/A264397/b264397.txt">Table of n, a(n) for n = 1..1000</a> %F A264397 G.f.: g(x) = sum(k*(product(1-x^{j*(k+1)}, j>=1) - product(1-x^{j*k}, j>=1)), k>=1)/product(1-x^j, j>=1). %e A264397 a(4) = 10 because the partitions 4,31,22,211,1111 of 4 have longest clique sizes 1,1,2,2,4, respectively. %p A264397 g := (sum(k*(product(1-x^(j*(k+1)), j = 1 .. 100) - product(1-x^(j*k), j = 1 .. 100)), k = 1 .. 100))/(product(1-x^j, j = 1 .. 100)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 1 .. 50); %o A264397 (Python) %o A264397 from sympy.utilities.iterables import partitions %o A264397 def A264397(n): return sum(max(p.values()) for p in partitions(n)) # _Chai Wah Wu_, Sep 17 2023 %Y A264397 Cf. A091602, A243978. %K A264397 nonn %O A264397 1,2 %A A264397 _Emeric Deutsch_, Nov 20 2015