cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264397 Sum of the sizes of the longest clique of all partitions of n.

This page as a plain text file.
%I A264397 #11 Sep 17 2023 18:28:19
%S A264397 1,3,5,10,15,26,38,60,86,127,178,255,349,484,652,885,1174,1565,2049,
%T A264397 2689,3481,4510,5779,7407,9403,11933,15029,18908,23636,29511,36641,
%U A264397 45432,56063,69076,84753,103833,126730,154438,187584,227485,275056,332066,399811
%N A264397 Sum of the sizes of the longest clique of all partitions of n.
%C A264397 All parts of an integer partition with the same value form a clique. The size of a clique is the number of elements in the clique.
%C A264397 a(n) = Sum(k*A091602(n,k), k=1..n).
%H A264397 Alois P. Heinz, <a href="/A264397/b264397.txt">Table of n, a(n) for n = 1..1000</a>
%F A264397 G.f.: g(x) = sum(k*(product(1-x^{j*(k+1)}, j>=1) - product(1-x^{j*k}, j>=1)), k>=1)/product(1-x^j, j>=1).
%e A264397 a(4) = 10 because the partitions 4,31,22,211,1111 of 4 have longest clique sizes 1,1,2,2,4, respectively.
%p A264397 g := (sum(k*(product(1-x^(j*(k+1)), j = 1 .. 100) - product(1-x^(j*k), j = 1 .. 100)), k = 1 .. 100))/(product(1-x^j, j = 1 .. 100)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 1 .. 50);
%o A264397 (Python)
%o A264397 from sympy.utilities.iterables import partitions
%o A264397 def A264397(n): return sum(max(p.values()) for p in partitions(n)) # _Chai Wah Wu_, Sep 17 2023
%Y A264397 Cf. A091602, A243978.
%K A264397 nonn
%O A264397 1,2
%A A264397 _Emeric Deutsch_, Nov 20 2015