cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264400 Number of parts of even multiplicities in all the partitions of n.

This page as a plain text file.
%I A264400 #28 Jun 14 2025 10:10:19
%S A264400 0,0,1,0,3,2,6,6,15,15,29,34,58,70,109,132,199,246,348,435,601,746,
%T A264400 1005,1252,1653,2053,2666,3298,4231,5219,6608,8124,10198,12476,15525,
%U A264400 18927,23374,28387,34823,42122,51376,61922,75098,90200,108874,130298,156564,186777,223490,265779,316799
%N A264400 Number of parts of even multiplicities in all the partitions of n.
%C A264400 a(n) = Sum_{k>=0} k*A264399(n,k).
%H A264400 Vaclav Kotesovec, <a href="/A264400/b264400.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%F A264400 G.f.: g(x) = (Sum_{j>=1} (x^(2j)/(1+x^j))) / Product_{k>=1} (1-x^k).
%e A264400 a(6) = 6 because we have [6], [5,1], [4,2], [4,1*,1], [3*,3], [3,2,1], [3,1,1,1], [2,2,2], [2*,2,1*,1], [2,1*,1,1,1], and [1*,1,1,1,1,1] (the 6 parts with even multiplicities are marked).
%p A264400 g := (sum(x^(2*j)/(1+x^j), j = 1 .. 100))/(product(1-x^j, j = 1 .. 100)): gser := series(g, x = 0, 70): seq(coeff(gser, x, n), n = 0 .. 60);
%t A264400 Needs["Combinatorica`"]; Table[Count[Last /@ Flatten[Tally /@ Combinatorica`Partitions@ n, 1], k_ /; EvenQ@ k], {n, 0, 50}] (* _Michael De Vlieger_, Nov 21 2015 *)
%t A264400 Table[Sum[(1 - 2*DivisorSigma[0, 2*k] + 3*DivisorSigma[0, k]) * PartitionsP[n-k], {k, 1, n}], {n, 0, 50}] (* _Vaclav Kotesovec_, Jun 14 2025 *)
%o A264400 (PARI) { my(n=50); Vec(sum(k=1, n, x^(2*k)/(1+x^k) + O(x*x^n)) / prod(k=1, n, 1-x^k + O(x*x^n)), -(n+1)) } \\ _Andrew Howroyd_, Dec 22 2017
%Y A264400 Cf. A264399, A325939.
%K A264400 nonn
%O A264400 0,5
%A A264400 _Emeric Deutsch_, Nov 21 2015