cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264429 Triangle read by rows, inverse Bell transform of Bell numbers.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 1, -3, 1, 0, 0, 7, -6, 1, 0, -5, -10, 25, -10, 1, 0, 18, -20, -75, 65, -15, 1, 0, -7, 231, 70, -315, 140, -21, 1, 0, -338, -840, 1064, 945, -980, 266, -28, 1, 0, 2215, -1278, -8918, 1512, 4935, -2520, 462, -36, 1
Offset: 0

Views

Author

Peter Luschny, Nov 13 2015

Keywords

Examples

			[ 1 ]
[ 0,     1 ]
[ 0,    -1,     1 ]
[ 0,     1,    -3,     1 ]
[ 0,     0,     7,    -6,     1 ]
[ 0,    -5,   -10,    25,   -10,     1 ]
[ 0,    18,   -20,   -75,    65,   -15,     1 ]
[ 0,    -7,   231,    70,  -315,   140,   -21,     1 ]
[ 0,  -338,  -840,  1064,   945,  -980,   266,   -28,     1 ]
[ 0,  2215, -1278, -8918,  1512,  4935, -2520,   462,   -36,   1 ]
		

Crossrefs

Programs

  • Mathematica
    rows = 10;
    M = Table[BellY[n, k, BellB[Range[0, rows-1]]],{n, 0, rows-1}, {k, 0, rows-1}] // Inverse;
    A264429 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses[bell_transform from A264428]
    def inverse_bell_transform(dim, L):
        M = matrix(ZZ, dim)
        for n in range(dim):
            row = bell_transform(n, L)
            for k in (0..n): M[n,k] = row[k]
        return M.inverse()
    def A264429_matrix(dim):
        uno = [1]*dim
        bell_numbers = [sum(bell_transform(n, uno)) for n in range(dim)]
        return inverse_bell_transform(dim, bell_numbers)
    A264429_matrix(10)