A264429 Triangle read by rows, inverse Bell transform of Bell numbers.
1, 0, 1, 0, -1, 1, 0, 1, -3, 1, 0, 0, 7, -6, 1, 0, -5, -10, 25, -10, 1, 0, 18, -20, -75, 65, -15, 1, 0, -7, 231, 70, -315, 140, -21, 1, 0, -338, -840, 1064, 945, -980, 266, -28, 1, 0, 2215, -1278, -8918, 1512, 4935, -2520, 462, -36, 1
Offset: 0
Examples
[ 1 ] [ 0, 1 ] [ 0, -1, 1 ] [ 0, 1, -3, 1 ] [ 0, 0, 7, -6, 1 ] [ 0, -5, -10, 25, -10, 1 ] [ 0, 18, -20, -75, 65, -15, 1 ] [ 0, -7, 231, 70, -315, 140, -21, 1 ] [ 0, -338, -840, 1064, 945, -980, 266, -28, 1 ] [ 0, 2215, -1278, -8918, 1512, 4935, -2520, 462, -36, 1 ]
Links
- Peter Luschny, The Bell transform
Programs
-
Mathematica
rows = 10; M = Table[BellY[n, k, BellB[Range[0, rows-1]]],{n, 0, rows-1}, {k, 0, rows-1}] // Inverse; A264429 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses[bell_transform from A264428] def inverse_bell_transform(dim, L): M = matrix(ZZ, dim) for n in range(dim): row = bell_transform(n, L) for k in (0..n): M[n,k] = row[k] return M.inverse() def A264429_matrix(dim): uno = [1]*dim bell_numbers = [sum(bell_transform(n, uno)) for n in range(dim)] return inverse_bell_transform(dim, bell_numbers) A264429_matrix(10)