A264431 Triangle read by rows, inverse Bell transform of second order Bell numbers (A187761).
1, 0, 1, 0, -1, 1, 0, 1, -3, 1, 0, -1, 7, -6, 1, 0, 2, -15, 25, -10, 1, 0, -8, 37, -90, 65, -15, 1, 0, 27, -133, 322, -350, 140, -21, 1, 0, -70, 587, -1330, 1757, -1050, 266, -28, 1, 0, 265, -2526, 6607, -9114, 7077, -2646, 462, -36, 1
Offset: 0
Examples
[ 1 ] [ 0, 1 ] [ 0, -1, 1 ] [ 0, 1, -3, 1 ] [ 0, -1, 7, -6, 1 ] [ 0, 2, -15, 25, -10, 1 ] [ 0, -8, 37, -90, 65, -15, 1 ] [ 0, 27, -133, 322, -350, 140, -21, 1 ] [ 0, -70, 587, -1330, 1757, -1050, 266, -28, 1 ] [ 0, 265, -2526, 6607, -9114, 7077, -2646, 462, -36, 1 ]
Links
- Peter Luschny, The Bell transform
Programs
-
Sage
# uses[bell_transform from A264428, inverse_bell_transform from A264429] def A264431_matrix(dim): uno = [1]*dim bell_numbers = [sum(bell_transform(n, uno)) for n in range(dim)] bell_number_2 = [sum(bell_transform(n, bell_numbers)) for n in range(dim)] return inverse_bell_transform(dim, bell_number_2) A264431_matrix(10)