This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264433 #22 Jan 30 2021 02:12:42 %S A264433 1,0,1,0,1,1,0,2,3,1,0,6,11,6,1,0,24,50,35,10,1,0,119,274,225,85,15,1, %T A264433 0,700,1757,1624,735,175,21,1,0,4748,12880,13104,6769,1960,322,28,1,0, %U A264433 36403,106068,117152,67200,22449,4536,546,36,1,0,310851,968206,1150050,720020,269115,63273,9450,870,45,1 %N A264433 Triangle read by rows, Bell transform of the third-order Bell numbers, T(n,k) for n >= 0 and 0 <= k <= n. %e A264433 [1] %e A264433 [0, 1] %e A264433 [0, 1, 1] %e A264433 [0, 2, 3, 1] %e A264433 [0, 6, 11, 6, 1] %e A264433 [0, 24, 50, 35, 10, 1] %e A264433 [0, 119, 274, 225, 85, 15, 1] %e A264433 [0, 700, 1757, 1624, 735, 175, 21, 1] %e A264433 [0, 4748, 12880, 13104, 6769, 1960, 322, 28, 1] %e A264433 [0, 36403, 106068, 117152, 67200, 22449, 4536, 546, 36, 1] %o A264433 (Sage) # uses[bell_transform from A264428] %o A264433 def A264433_triangle(dim): %o A264433 uno = [1]*dim %o A264433 bell_number = [sum(bell_transform(n, uno)) for n in range(dim)] %o A264433 bell_number_2 = [sum(bell_transform(n, bell_number)) for n in range(dim)] %o A264433 bell_number_3 = [sum(bell_transform(n, bell_number_2)) for n in range(dim)] %o A264433 for n in range(dim): print(bell_transform(n, bell_number_3)) %o A264433 A264433_triangle(10) %Y A264433 Cf. A000110, A048993, A264428, A264430. %K A264433 nonn,tabl %O A264433 0,8 %A A264433 _Peter Luschny_, Dec 02 2015 %E A264433 More terms from _Michel Marcus_, Mar 27 2020