A264434 Triangle read by rows, inverse Bell transform of the third-order Bell numbers, T(n,k) for n >= 0 and 0 <= k <= n.
1, 0, 1, 0, -1, 1, 0, 1, -3, 1, 0, -1, 7, -6, 1, 0, 1, -15, 25, -10, 1, 0, 0, 31, -90, 65, -15, 1, 0, -7, -56, 301, -350, 140, -21, 1, 0, 33, 35, -938, 1701, -1050, 266, -28, 1, 0, -102, 423, 2485, -7686, 6951, -2646, 462, -36, 1, 0, 240, -3219, -3450, 31885
Offset: 0
Examples
[ 1] [ 0, 1] [ 0, -1, 1] [ 0, 1, -3, 1] [ 0, -1, 7, -6, 1] [ 0, 1, -15, 25, -10, 1] [ 0, 0, 31, -90, 65, -15, 1] [ 0, -7, -56, 301, -350, 140, -21, 1] [ 0, 33, 35, -938, 1701, -1050, 266, -28, 1] [ 0, -102, 423, 2485, -7686, 6951, -2646, 462, -36, 1]
Programs
-
Sage
# uses[bell_transform from A264428, inverse_bell_transform from A264429] def A264434_matrix(dim): uno = [1]*dim bell_numbers = [sum(bell_transform(n, uno)) for n in range(dim)] bell_number_2 = [sum(bell_transform(n, bell_numbers)) for n in range(dim)] bell_number_3 = [sum(bell_transform(n, bell_number_2)) for n in range(dim)] return inverse_bell_transform(dim, bell_number_3) A264434_matrix(10)