cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264498 Numbers n that are the product of three distinct odd primes and x^2 + y^2 = n has integer solutions.

Original entry on oeis.org

1105, 1885, 2405, 2465, 2665, 3145, 3445, 3485, 3965, 4505, 4745, 5185, 5365, 5785, 5945, 6205, 6305, 6409, 6565, 7085, 7345, 7565, 7585, 7685, 8177, 8245, 8585, 8845, 8905, 9061, 9265, 9605, 9685, 9805, 10205, 10585, 10865, 11245, 11285, 11645, 11713, 11765
Offset: 1

Views

Author

Colin Barker, Nov 15 2015

Keywords

Comments

The three primes are of the form 4*k + 1.

Examples

			1105 is in the sequence because x^2 + y^2 = 1105 = 5*13*17 has solutions (x,y) = (4,33), (9,32), (12,31) and (23,24).
		

Crossrefs

Programs

  • PARI
    dop(d, nmax) = {
      my(L=List(), v=vector(d,m,1)~, f);
      for(n=1, nmax,
        f=factorint(n);
        if(#f~==d && f[1,1]>2 && f[,2]==v && f[,1]%4==v, listput(L, n))
      );
      Vec(L)
    }
    dop(3, 15000)