A264499 Numbers n that are the product of four distinct odd primes and x^2 + y^2 = n has integer solutions.
32045, 40885, 45305, 58565, 67405, 69745, 77285, 80665, 91205, 98345, 98605, 99905, 101065, 107185, 111605, 114985, 120445, 124865, 127465, 128945, 130645, 137605, 141245, 146705, 150365, 151385, 162565, 164645, 166685, 167765, 173485, 175565, 179945, 182845
Offset: 1
Keywords
Examples
32045 is in the sequence because x^2 + y^2 = 32045 = 5*13*17*29 has solutions (x,y) = (2,179), (19,178), (46,173), (67,166), (74,163), (86,157), (109,142) and (122,131).
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Colin Barker)
Programs
-
PARI
dop(d, nmax) = { my(L=List(), v=vector(d,m,1)~, f); for(n=1, nmax, f=factorint(n); if(#f~==d && f[1,1]>2 && f[,2]==v && f[,1]%4==v, listput(L, n)) ); Vec(L) } dop(4, 200000)
Comments