This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264567 #4 Nov 17 2015 19:10:59 %S A264567 4,64,633,8356,96429,1133040,13182464,152082304,1755041376, %T A264567 20212718576,232567713472,2675565752448,30768380930304, %U A264567 353803395343872,4068017269164288,46771595781285888,537742555230347264 %N A264567 Number of (n+1)X(6+1) arrays of permutations of 0..n*7+6 with each element having directed index change 1,0 1,1 0,-1 or -1,1. %C A264567 Column 6 of A264569. %H A264567 R. H. Hardin, <a href="/A264567/b264567.txt">Table of n, a(n) for n = 1..210</a> %F A264567 Empirical: a(n) = 12*a(n-1) +48*a(n-2) -400*a(n-3) -4048*a(n-4) +11008*a(n-5) +78144*a(n-6) +130560*a(n-7) -1737728*a(n-8) +404992*a(n-9) -2965248*a(n-10) +63133696*a(n-11) -237834240*a(n-12) +595820544*a(n-13) -2770386944*a(n-14) +13195608064*a(n-15) -29207560192*a(n-16) +119052697600*a(n-17) -486106202112*a(n-18) +1221473599488*a(n-19) -4705283473408*a(n-20) +13249705672704*a(n-21) -32820932116480*a(n-22) +110719425052672*a(n-23) -236031269928960*a(n-24) +531386238763008*a(n-25) -1555418111279104*a(n-26) +2696466367774720*a(n-27) -5226184925249536*a(n-28) +13099581533323264*a(n-29) -18769762997764096*a(n-30) +29251407345352704*a(n-31) -60587488736968704*a(n-32) +67342888178024448*a(n-33) -70931694131085312*a(n-34) +112589990684262400*a(n-35) -72057594037927936*a(n-36) for n>40 %e A264567 Some solutions for n=4 %e A264567 ..1..2..3..4..5.11.12....1..2..3..9..5.11.12....1..7..8..4.10..6.12 %e A264567 ..0..9.15.16.17.18..6....8..0.10.16..4.13..6....0..9..2.16..3.13..5 %e A264567 ..7..8.22.10.24.20.13....7.21.17.23.24.20.26...15.21.22.23.11.20.26 %e A264567 .14.28.29.25.26.32.19...14.28.15.25.31.18.19...14.28.24.25.17.18.19 %e A264567 .21.30.31.23.33.34.27...29.30.22.32.33.34.27...29.30.31.32.33.34.27 %Y A264567 Cf. A264569. %K A264567 nonn %O A264567 1,1 %A A264567 _R. H. Hardin_, Nov 17 2015