A264592 Let G[1](q) denote the g.f. for A003114 and G[2](q) the g.f. for A003106 (the two Rogers-Ramanujan identities). For i>=3, let G[i](q) = (G[i-1](q)-G[i-2](q))/q^(i-2). Sequence gives coefficients of G[5](q).
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 23, 25, 29, 32, 36, 40, 46, 50, 57, 63, 71, 78, 88, 96, 108, 119, 132, 145, 162, 177, 197, 216, 239, 262, 290, 317, 350, 383, 421, 460, 507, 552, 606, 661, 724, 789, 864, 939, 1027, 1117
Offset: 0
Keywords
Examples
From _Wolfdieter Lang_, Nov 03 2016: (Start) a(5) = 1 because the only partition of n = 5 without parts 1, 2, 3 and 4, and parts differing by at least 2 is [5]. a(12) = 2 from the two partitions [12] and [7,5] of n = 12. a(18) = 5 from the five partitions [18], [13,5], [12,6], [11,7], [10,8] of n = 18. (End)
References
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 91-92.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- George E. Andrews; R. J. Baxter, A motivated proof of the Rogers-Ramanujan identities, Amer. Math. Monthly 96 (1989), no. 5, 401-409.
- Shashank Kanade, Some results on the representation theory of vertex operator algebras and integer partition identities, PhD Handout, Math. Dept., Rutgers University, April 2015.
- Shashank Kanade, Some results on the representation theory of vertex operator algebras and integer partition identities, PhD Dissertation, Math. Dept., Rutgers University, April 2015.
Crossrefs
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Sum[x^(k*(k+4))/Product[1-x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 24 2016 *)
Formula
From Wolfdieter Lang, Nov 03 2016: (Start)
G.f.: G[5](q) = GI_2(q) = Sum_{m>=0} q^(m*(m+4))/Product_{j=1..m} (1 - q^j).
See [A-B], eq. (5.1) for i=5.
a(0) = 1 and a(n) gives the number of partitions of n without part 1 and 2, the parts differing by at least 2.
G.f.: Sum_{m=0} ((-1)^m*(1 - q^(m+1))*(1 - q^(m+2))*(1 - q^(m+3))*(1 - q^(2*(m+2))) * q^(5*(n+3)*n/2)) / Product_{j>=1} (1 - q^j). See [A-B], eq. (3.8) for i=5. (End)
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * sqrt(5) * phi^(7/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 24 2016
Comments