A264594 Let G[1](q) denote the g.f. for A003114 and G[2](q) the g.f. for A003106 (the two Rogers-Ramanujan identities). For i>=3, let G[i](q) = (G[i-1](q)-G[i-2](q))/q^(i-2). Sequence gives coefficients of G[7](q).
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 24, 26, 29, 32, 36, 39, 44, 48, 54, 59, 66, 72, 81, 88, 98, 107, 119, 129, 143, 156, 172, 187, 206, 224, 247, 268, 294, 320, 351, 381, 417, 453, 495, 537, 586, 635, 693, 750, 816
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Shashank Kanade, Some results on the representation theory of vertex operator algebras and integer partition identities, PhD Handout, Math. Dept., Rutgers University, April 2015.
- Shashank Kanade, Some results on the representation theory of vertex operator algebras and integer partition identities, PhD Dissertation, Math. Dept., Rutgers University, April 2015.
Crossrefs
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Sum[x^(k*(k+6))/Product[1-x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 24 2016 *)
Formula
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * sqrt(5) * phi^(11/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 24 2016
Comments