This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264600 #35 Nov 05 2023 09:04:08 %S A264600 0,1,2,3,4,5,6,7,8,9,1,3,5,7,9,11,13,15,17,19,2,5,8,11,14,17,20,23,26, %T A264600 29,3,7,11,15,19,23,27,31,35,39,4,9,14,19,24,29,34,39,44,49,5,11,17, %U A264600 23,29,35,41,47,53,59,6,13,20,27,34,41,48,55,62,69,7,15,23,31,39,47,55,63,71,79,8,17,26,35,44,53,62,71,80,89,9,19,29,39,49,59,69,79,89,99,1,12 %N A264600 Let S_n denote the list of decimal numbers 0 to n, written backwards (allowing leading zeros) and arranged in lexicographic order; a(n) = position where backwards-n appears, starting indexing at 0. %H A264600 Alois P. Heinz, <a href="/A264600/b264600.txt">Table of n, a(n) for n = 0..20000</a> (first 10000 terms from Chai Wah Wu) %F A264600 a(0) = 0, a(10n+m) = a(n) + m*(n+1) for m in {0,...,9}. - _Alois P. Heinz_, Nov 20 2015 %e A264600 S_0 = [0], so a(0)=0, %e A264600 ... %e A264600 S_9 = [0,1,2,3,4,5,6,7,8,9], so a(9) = 9, %e A264600 S_10 = [0,01,1,2,3,4,5,6,7,8,9], so a(10) = 1, %e A264600 S_11 = [0,01,1,11,2,3,4,5,6,7,8,9], so a(11) = 3, %e A264600 ... %e A264600 S_20 = [0,01,02,1,11,2,21,3,31,4,41,5,51,6,61,7,71,8,81,9,91], so a(20) = 2, and so on %p A264600 a:= proc(n) option remember; `if`(n=0, 0, %p A264600 irem(n, 10, 'r')*(r+1)+a(r)) %p A264600 end: %p A264600 seq(a(n), n=0..101); # _Alois P. Heinz_, Nov 20 2015 %t A264600 A264600[0]=0;A264600[n_]:=A264600[n]=Mod[n,10](Floor[n/10]+1)+A264600[Floor[n/10]];Array[A264600,100,0] (* _Paolo Xausa_, Nov 04 2023, after _Alois P. Heinz_ *) %o A264600 (Python) %o A264600 def A264600(n): %o A264600 return sorted(str(i)[::-1] for i in range(n+1)).index(str(n)[::-1]) # _Chai Wah Wu_, Nov 20 2015 %Y A264600 Decimal analog of A264596. %Y A264600 Has same beginning as A061486 but is ultimately different: see A264668. %K A264600 nonn,base %O A264600 0,3 %A A264600 _N. J. A. Sloane_, Nov 20 2015 %E A264600 More terms from _Alois P. Heinz_, Nov 20 2015