This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264613 #38 Sep 06 2018 11:10:14 %S A264613 2,5,8,11,23,32,47,95,128,191,383,512,767,1535,2048,3071,6143,8192, %T A264613 12287,24575,32768,49151,98303,131072,196607,393215,524288,786431, %U A264613 1572863,2097152,3145727,6291455,8388608 %N A264613 Numbers n such that the Shevelev polynomial {m, n} has a root at m = -1. %C A264613 From _Peter J. C. Moses_, Dec 12 2015: (Start) %C A264613 This appears to split into 3 sequences: %C A264613 b(n) = 3*4^(n-1)-1, n>=1: 2,11,47,191,767,3071,12287,49151,..., %C A264613 c(n) = 3*2^(2*n-1)-1, n>=1: 5,23,95,383,1535,6143,24575,98303,..., %C A264613 d(n) = 2^(2*n+1), n>=1: 8,32,128,512,2048,8192,32768,...; %C A264613 If this is true, then the next few terms of the sequence are 12582911, 25165823, 33554432, 50331647, 100663295, ... %C A264613 (End) %H A264613 Vladimir Shevelev, <a href="http://arxiv.org/abs/0801.0072">On the Basis Polynomials in the Theory of Permutations with Prescribed Up-Down Structure</a>, arXiv:0801.0072 [math.CO], 2007-2010. See Appendix. %H A264613 Vladimir Shevelev, <a href="http://www.emis.de/journals/INTEGERS/papers/m1/m1.Abstract.html">The number of permutations with prescribed up-down structure as a function of two variables</a>, INTEGERS, 12 (2012), #A1. (See Section 11, Problem 3.) %H A264613 V. Shevelev and J. Spilker, <a href="http://dx.doi.org/10.4171/EM/229">Up-down coefficients for permutations</a>, Elemente der Mathematik, Vol. 68 (2013), no.3, 115-127. %F A264613 Conjectured g.f.: (2 + x*(5 + x*(8 + x*(1 + (-2 - 8*x)* x)))) / (1 + x^3*(-5 + 4*x^3)). - _Peter J. C. Moses_, Dec 12 2015 %t A264613 upDown[n_, k_] := upDown[n, k] = Module[{t, m}, t = Flatten[ Reverse[ Position[ Reverse[ IntegerDigits[k, 2]], 1]]]; m = Length[t]; (-1)^m + Sum[upDown[t[[j]], k - 2^(t[[j]] - 1)]*Binomial[n, t[[j]]], {j, 1, m}]]; %t A264613 Reap[For[k = 2, k <= 2^15, k++, If[(upDown[n, k] /. n -> -1) == 0, Print[k]; Sow[k]]]][[2, 1]] (* _Jean-François Alcover_, Sep 06 2018 *) %Y A264613 Cf. A133457 (positive integer roots of {m,n}), A263848. %K A264613 nonn %O A264613 1,1 %A A264613 _N. J. A. Sloane_, Nov 28 2015 %E A264613 More terms (starting at a(6)) from _Peter J. C. Moses_, Dec 12 2015