A264628 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change -2,0 -1,0 0,-1 or 1,1.
0, 1, 1, 0, 2, 2, 0, 4, 4, 1, 1, 9, 13, 8, 1, 0, 16, 40, 22, 16, 4, 0, 37, 125, 108, 61, 32, 6, 1, 76, 393, 684, 660, 280, 64, 5, 0, 160, 1200, 2736, 6107, 4032, 832, 128, 7, 0, 337, 3759, 13556, 37225, 50353, 19521, 2373, 256, 15, 1, 704, 11572, 68972, 349391, 604916
Offset: 1
Examples
Some solutions for n=4 k=4 ..5.11..7..4..9....5..2..7..4.14....1..6..7..4..9....1..2..7..4.14 ..6..0..1..2..3....6..0..1..9..3...10..0.12..2..3....6..0.12..9..3 .20.12.13.14..8...15.12.13.23..8...20..5.22.14..8...11..5.13.23..8 .16.10.22.19.24...20.10.11.19.24...16.17.11.19.13...20.10.22.19.24 .21.15.23.17.18...21.22.16.17.18...21.15.23.24.18...21.15.16.17.18
Links
- R. H. Hardin, Table of n, a(n) for n = 1..162
Crossrefs
Column 2 is A000079(n-1).
Formula
Empirical for column k:
k=1: a(n) = a(n-3) +2*a(n-4) +a(n-5)
k=2: a(n) = 2*a(n-1)
k=3: [order 45]
k=4: [order 11] for n>12
Empirical for row n:
n=1: a(n) = a(n-3)
n=2: a(n) = 2*a(n-1) +2*a(n-5) -2*a(n-6) +4*a(n-7) -a(n-10)
n=3: [order 15]
n=4: [order 18] for n>21
Comments