This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264646 #19 Dec 23 2024 14:53:44 %S A264646 11,21,32,41,53,62,74,81,95,103,116,122,137,144,158,161,179,185,191, %T A264646 200,213,221,231,246,251,262,272,281,293,307,311,324,334,341,355,368, %U A264646 371,386,391,401,417,429,431,448,455,461,479,481,492,500,510,522,531 %N A264646 A simple self-describing sequence S: n concatenated with the n-th digit of S. %C A264646 Although A003602 and this sequence initially agree in their digit-streams, they differ after 48 digits. - _N. J. A. Sloane_, Nov 20 2015 %H A264646 Reinhard Zumkeller, <a href="/A264646/b264646.txt">Table of n, a(n) for n = 1..10000</a> %H A264646 Éric Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2015-November/015661.html">n concatenated with the nth digit of S</a>, SeqFan list, Nov 19 2015. %e A264646 . n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 %e A264646 . ----+----+---+---+---+---+---+---+---+---+-----+-----+-----+-----+----- %e A264646 . a(n)| 11 21 32 41 53 62 74 81 95 103 116 122 137 144 %e A264646 . digs| 1 1 2 1 3 2 4 1 5 3 6 2 7 4 8 1 9 5 1 0 3 1 1 6 1 2 2 1 3 7 1 4 4 . %o A264646 (Haskell) %o A264646 import Data.List (genericIndex) %o A264646 a264646 n = a264646_list !! (n-1) %o A264646 a264646_list = 11 : f 2 [0, 1, 1] where %o A264646 f x digs = (foldl (\v d -> 10 * v + d) 0 ys) : f (x + 1) (digs ++ ys) %o A264646 where ys = map (read . return) (show x) ++ [genericIndex digs x] %o A264646 (Python) %o A264646 from itertools import count, islice %o A264646 def agen(): # generator of terms %o A264646 an, s = 11, [None, 1, 1] %o A264646 for n in count(2): %o A264646 yield an %o A264646 an = 10*n + s[n] %o A264646 s.extend(list(map(int, str(an)))) %o A264646 print(list(islice(agen(), 53))) # _Michael S. Branicky_, Oct 03 2024 %Y A264646 Cf. A003602. %K A264646 nonn,base %O A264646 1,1 %A A264646 _Eric Angelini_ and _Reinhard Zumkeller_, Nov 20 2015