This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264731 #12 Dec 03 2015 04:22:49 %S A264731 2,3,5,7,13,11,19,37,29,17,53,89,71,43,23,131,223,173,107,61,31,311, %T A264731 503,409,263,151,79,41,719,1163,941,613,359,193,101,47,1619,2657,2129, %U A264731 1423,827,457,239,113,59,3671,5849,4751,3167,1877,1049,569,281,139,67 %N A264731 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = prime(2^(n-1)*(2*k-1)), n,k >= 1. %C A264731 Every primes appears exactly once in the array. %F A264731 A(n,k) = A000040(A054582(n-1,k-1)). %F A264731 A(A001511(m),A003602(m)) = A000040(m), m >= 1. %e A264731 The array begins: %e A264731 . 2 5 11 17 23 31 41 47 59 67 %e A264731 . 3 13 29 43 61 79 101 113 139 163 %e A264731 . 7 37 71 107 151 193 239 281 337 383 %e A264731 . 19 89 173 263 359 457 569 659 769 881 %e A264731 . 53 223 409 613 827 1049 1283 1511 1747 2003 %e A264731 . 131 503 941 1423 1877 2377 2861 3413 3923 4481 %e A264731 . 311 1163 2129 3167 4211 5309 6379 7561 8731 9857 %e A264731 . 719 2657 4751 6971 9311 11731 14143 16603 19183 21661 %e A264731 . 1619 5849 10459 15331 20393 25579 30859 36161 41611 47143 %e A264731 . 3671 12907 22943 33479 44269 55487 66791 78193 89899 101573 %e A264731 As a triangle: %e A264731 . 2 %e A264731 . 3 5 %e A264731 . 7 13 11 %e A264731 . 19 37 29 17 %e A264731 . 53 89 71 43 23 %e A264731 . 131 223 173 107 61 31 %e A264731 . 311 503 409 263 151 79 41 %e A264731 ... %t A264731 (* Array: *) %t A264731 Grid[Table[Prime[2^(n - 1)*(2*k - 1)], {n, 10}, {k, 10}]] %t A264731 (* Array antidiagonals flattened: *) %t A264731 Flatten[Table[Prime[2^(n - k)*(2*k - 1)], {n, 10}, {k, n}]] %Y A264731 Cf. A031368, A031378, A031395 (rows 1--3). %Y A264731 Cf. A033844 (column 1). %Y A264731 Cf. A264735 (main diagonal). %Y A264731 Cf. A000040, A001511, A003602, A054582. %K A264731 nonn,tabl %O A264731 1,1 %A A264731 _L. Edson Jeffery_, Nov 22 2015