cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264734 Prime powers k such that k - 2 and k + 2 are prime powers.

Original entry on oeis.org

3, 5, 7, 9, 11, 25, 27, 29, 81, 241, 59051, 450283905890997361, 36472996377170786401
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 22 2015

Keywords

Comments

From Robert Israel, Nov 22 2015: (Start)
a(14) > 3^1000 - 2 if it exists.
One of a(n), a(n)+2 and a(n)-2 must be a power of 3. (End)

Examples

			81 is in this sequence because 81 - 2 = 79, 81 and 81 + 2 = 83 are all prime powers.
		

Crossrefs

Programs

  • Magma
    [n: n in [5..100000] | IsPrimePower(n-2) and IsPrimePower(n) and IsPrimePower(n+2)];
    
  • Maple
    ispp:= proc(x) local p, r;
      if isprime(x) then return true fi;
      p:= 2;
      do
         r:= iroot(x,p);
         if r^p = x then return isprime(r) fi;
         if r < 2 then return false fi;
         p:= nextprime(p);
      od:
    end proc:
    ispp(1):= true:
    A:= NULL;
    for n from 1 to 1000 do
      B:= map(ispp, [3^n-4,3^n-2,3^n+2,3^n+4]);
      if B[1] and B[2] then A:= A, 3^n-2 fi;
      if B[2] and B[3] then A:= A, 3^n fi;
      if B[3] and B[4] then A:= A, 3^n+2 fi;
    od:
    A; # Robert Israel, Nov 22 2015
  • Mathematica
    Prepend[Select[Range@ 100000, AllTrue[{# - 2, #, # + 2}, PrimePowerQ] &], 3] (* Michael De Vlieger, Dec 03 2015, Version 10 *)
  • PARI
    is(k) = isprimepower(k) || k==1;
    for(k=1, 1e6, if(is(k) && is(k+2) && is(k-2), print1(k, ", "))) \\ Altug Alkan, Nov 22 2015

Extensions

a(12) and a(13) from Robert Israel, Nov 22 2015