cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264745 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = Fibonacci(2^(n-1)*(2*k-1) + 1), n,k >= 1.

This page as a plain text file.
%I A264745 #13 Dec 03 2015 04:27:40
%S A264745 1,2,3,5,13,8,34,233,89,21,1597,75025,10946,610,55,3524578,7778742049,
%T A264745 165580141,514229,4181,144,17167680177565,83621143489848422977,
%U A264745 37889062373143906,365435296162,24157817,28657,377,407305795904080553832073954
%N A264745 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = Fibonacci(2^(n-1)*(2*k-1) + 1), n,k >= 1.
%C A264745 The array exhausts, without duplication, the subsequence of A000045 obtained by removing the first two terms {0,1}.
%H A264745 G. C. Greubel, <a href="/A264745/b264745.txt">Table of n, a(n) for n = 1..78</a>
%F A264745 A(n,k) = A000045(A054582(n-1,k-1) + 1).
%F A264745 A(A001511(m),A003602(m)) = A000045(m+1), m >= 1.
%F A264745 Conjectured g.f. for row n: x*(A000045(2^(n-1)+1) - A000045(2^(n-1)-1)*x)/(1 - A001566(n)*x + x^2), n >= 1.
%e A264745 The array begins:
%e A264745 .     1           3                  8                        21
%e A264745 .     2          13                 89                       610
%e A264745 .     5         233              10946                    514229
%e A264745 .    34       75025          165580141              365435296162
%e A264745 .  1597  7778742049  37889062373143906  184551825793033096366333
%t A264745 (* Array: *)
%t A264745 Grid[Table[Fibonacci[2^(n - 1)*(2 k - 1) + 1], {n, 5}, {k, 4}]]
%t A264745 (* Array antidiagonal flattened: *)
%t A264745 Flatten[Table[Fibonacci[2^(n - k)*(2 k - 1) + 1], {n, 7}, {k, n}]]
%Y A264745 Cf. A001906, A033891 (rows 1--2).
%Y A264745 Cf. A192222 (column 1).
%Y A264745 Cf. A000045, A001511, A001566, A003602, A054582
%K A264745 nonn,tabl
%O A264745 1,2
%A A264745 _L. Edson Jeffery_, Nov 23 2015