cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264746 a(n) is the number of domino towers with n bricks up to horizontal flipping.

This page as a plain text file.
%I A264746 #50 Mar 12 2021 15:55:42
%S A264746 1,2,6,15,44,126,374,1106,3307,9877,29599,88675,265932,797453,2392089,
%T A264746 7175294,21525097,64572513,193715253,581137787,1743406694,5230197111,
%U A264746 15690571861,47071649170,141214890563,423644479136,1270933270658,3812799252359,11438397268254,34315190174990
%N A264746 a(n) is the number of domino towers with n bricks up to horizontal flipping.
%C A264746 A domino tower is a stack of bricks, where (1) each row is offset from the preceding row by half of a brick, (2) the bottom row is contiguous, and (3) each brick is supported from below by at least half of a brick.
%C A264746 The number of domino towers with n bricks is given by 3^(n-1).
%H A264746 Andrew Howroyd, <a href="/A264746/b264746.txt">Table of n, a(n) for n = 1..1000</a>
%F A264746 a(n) = (3^(n-1) + A320314(n))/2
%e A264746 For n=3, the a(3) = 6 domino towers are:
%e A264746 +-------+-------+-------+-------+
%e A264746 |       |       |       |       |
%e A264746 +-------+-------+-------+-------+
%e A264746     +-------+
%e A264746     |       |
%e A264746 +---+---+---+---+
%e A264746 |       |       |
%e A264746 +-------+-------+
%e A264746 +-------+-------+
%e A264746 |       |       |
%e A264746 +---+---+---+---+
%e A264746     |       |
%e A264746     +-------+
%e A264746             +-------+
%e A264746             |       |
%e A264746 +-------+---+---+---+
%e A264746 |       |       |
%e A264746 +-------+-------+
%e A264746     +-------+
%e A264746     |       |
%e A264746 +---+---+---+
%e A264746 |       |
%e A264746 +---+---+---+
%e A264746     |       |
%e A264746     +-------+
%e A264746         +-------+
%e A264746         |       |
%e A264746     +---+---+---+
%e A264746     |       |
%e A264746 +---+---+---+
%e A264746 |       |
%e A264746 +-------+
%Y A264746 Cf. A000244, A168368, A320314.
%K A264746 nonn
%O A264746 1,2
%A A264746 _Peter Kagey_, Oct 10 2018
%E A264746 Terms a(20) and beyond from _Andrew Howroyd_, Mar 12 2021