A264747 Prime powers n such that either n - 1 or n + 1 is a prime power, but not both.
1, 5, 7, 9, 16, 17, 31, 32, 127, 128, 256, 257, 8191, 8192, 65536, 65537, 131071, 131072, 524287, 524288, 2147483647, 2147483648, 2305843009213693951, 2305843009213693952, 618970019642690137449562111
Offset: 1
Keywords
Examples
7 is in this sequence because 7 and 7 + 1 = 8 are both prime power, but 7 - 1 = 6 is not a prime power.
Links
- Robert Israel, Table of n, a(n) for n = 1..42
Programs
-
Maple
fermats:= {seq(2^(2^m)+1, m=1..4)}: mersennes:= {seq(numtheory:-mersenne([i]), i=2..14)}: R:= fermats union map(`-`,fermats,1) union mersennes union map(`+`,mersennes,1): sort(convert(R union {1,9} minus {2,3,4,8},list)); # Robert Israel, Nov 25 2015
-
PARI
is(k) = isprimepower(k) || k==1; for(k=1, 1e6, if(is(k) && is(k-1) + is(k+1) == 1, print1(k, ", "))) \\ Altug Alkan, Nov 23 2015
Comments