This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264770 #25 Jul 09 2025 04:40:20 %S A264770 1,6,4,9,61,504,100,489,2944,656,3844,34449,85636,516,961,6201,5625, %T A264770 43524,36729,7225,344,569,2996,361,201,64,1601,6004,7001,316,84,681, %U A264770 21,16,81,225,625,5001,3184,3449,2129,8225,424,36,481,636,804,609,1024,144 %N A264770 a(1) = 1, a(n) = smallest positive number not yet in the sequence such that the concatenation of a(n-1) and a(n) is a square. %C A264770 For any x > 0, if d is large enough there are squares between 10^d*x + 10^(d-1) and 10^d*x + 10^d - 1. Thus the sequence is infinite. %C A264770 a(3) = 4 is the minimum value of a(n) for n > 1. - _Altug Alkan_, Nov 24 2015 (This is because no square can end in 2 or 3, so 2 and 3 can never appear in the sequence. - _N. J. A. Sloane_, Nov 24 2015) %H A264770 Robert Israel, <a href="/A264770/b264770.txt">Table of n, a(n) for n = 1..10000</a> %e A264770 For n = 6, a(n-1) = 61. There are no squares of the form 61x or 61xy with x>=1. The least square of the form 61xyz with x >= 1 is 61504, and 504 has not appeared previously so a(6) = 504. %p A264770 S:= {1}; %p A264770 A[1]:= 1; %p A264770 for n from 2 to 100 do %p A264770 found:= false; %p A264770 x:= A[n-1]; %p A264770 for d from 1 while not found do %p A264770 a:= ceil(sqrt(10^d*x +10^(d-1))); %p A264770 b:= floor(sqrt(10^d*x + 10^d - 1)); %p A264770 Q:= map(t -> t^2 - 10^d*x, {$a..b}) minus S; %p A264770 if nops(Q) >= 1 then %p A264770 A[n]:= min(Q); %p A264770 S:= S union {A[n]}; %p A264770 found:= true; %p A264770 fi %p A264770 od %p A264770 od: %p A264770 seq(A[n],n=1..100); %t A264770 (*to get B numbers of the sequence*) A={1};i=1;While[i<B,i++;m=Last[A];d=0;flag=0;While[flag==0,d++;g0=Ceiling[Sqrt[m*10^d+10^(d-1)]];h=(m+1)10^d;a=g0;Label[L$];If[a^2<h,b=a^2-m*10^d;If[MemberQ[A,b],a++;Goto[L$],flag=1;AppendTo[A,b]]]]];A (* _Emmanuel Vantieghem_, Nov 24 2015 *) %o A264770 (PARI) A264770(n,show=0,a=1,u=[])={for(n=2, n, u=setunion(u,[a]); show&&print1(a", "); my(k=3); until(!setsearch(u, k++) && issquare(eval(Str(a,k))),);a=k); a} \\ Use optional 2nd, 3rd or 4th argument to print intermediate terms, use another starting value, or exclude some numbers. - _M. F. Hasler_, Nov 24 2015 %Y A264770 Cf. A082209, A090566. %K A264770 nonn,base %O A264770 1,2 %A A264770 _Robert Israel_, Nov 24 2015, following a suggestion from _N. J. A. Sloane_