cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264776 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is pentagonal: (3n^2 - n)/2.

This page as a plain text file.
%I A264776 #21 Jul 14 2019 22:24:42
%S A264776 1,2,47,160,6070026,47418729166667,4741872916666741666666666667,
%T A264776 47418729166667416666666666674166666666666666666666666667
%N A264776 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is pentagonal: (3n^2 - n)/2.
%C A264776 It appears that a(n) = ceiling((a(n-1) + 5/12)*10^(7*2^(n-6))) for n >= 7. - _Jon E. Schoenfield_, Nov 24 2015
%H A264776 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentagonal_number">Pentagonal number</a>
%e A264776 1, 12, 1247, 1247160, 12471606070026 are pentagonal.
%o A264776 (PARI) ispentagonal(n)=ispolygonal(n,5)
%o A264776 first(m)=my(v=vector(m),s="");s="1";v[1]=1;for(i=2,m,n=1;while(!ispentagonal(eval(concat(s,Str(n)))),n++);v[i]=n;s=concat(s,Str(n)));v
%Y A264776 Cf. A000326, A264738.
%K A264776 nonn,base,more
%O A264776 1,2
%A A264776 _Anders Hellström_, Nov 24 2015
%E A264776 a(6)-a(8) from _Jon E. Schoenfield_, Nov 24 2015