This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264780 #9 Nov 26 2015 03:39:54 %S A264780 1,3,8,13,19,26,33,2,7,14,23,43,57,67,81,93,5,18,52,72,115,138,164,10, %T A264780 63,127,200,240,41,49,58,66,4,16,31,47,85,107,20,60,159,214,11,34,100, %U A264780 134,175,22,118,234,296,75,84,6,21,39,62,109,133,27,76,197,265 %N A264780 a(n) is the index of A246947(n) in A000977. %C A264780 Is this a permutation of the positive integers? %H A264780 Robert Israel, <a href="/A264780/b264780.txt">Table of n, a(n) for n = 1..10000</a> %e A264780 The first 5 terms of A246947 are 30, 60, 90, 120, and 150, that is, the 1st, 3rd, 8th, 13th and 19th terms of A000977. %p A264780 N:= 1000: # get all terms before the first term > N %p A264780 W:= Vector(N, t -> if nops(numtheory:-factorset(t))<=2 then 0 else 1 fi): %p A264780 WS:= ListTools:-PartialSums(convert(W, list)): %p A264780 m:= 1: %p A264780 F:= {2, 3,5}: %p A264780 A[1]:= WS[30]: %p A264780 W[30]:= 0: %p A264780 for n from 2 do %p A264780 while W[m] = 0 and m < N do m:= m+1 od; %p A264780 for k from m to N do %p A264780 if W[k] = 1 and nops(numtheory:-factorset(k) intersect F) = 3 then %p A264780 A[n]:= WS[k]; %p A264780 W[k]:= 0; %p A264780 F:= numtheory:-factorset(k); %p A264780 break %p A264780 fi %p A264780 od; %p A264780 if k > N then break fi; %p A264780 od: %p A264780 seq(A[i],i=1..n-1); # _Robert Israel_, Nov 26 2015 %o A264780 (PARI) v246947(nn) = {a = 30; fa = (factor(a)[,1])~; va = [a]; vs = va; k = 0; while (k < nn, k = 1; while (!((#setintersect(fa, (factor(k)[,1])~) == 3) && (! vecsearch(vs, k))), k++); a = k; fa = (factor(a)[,1])~; va = concat(va, k); vs = vecsort(va);); va;} %o A264780 v000977(nn) = {va = []; for (n=1, nn, if (omega(n) >= 3, va = concat(va, n));); va;} %o A264780 lista(nn) = {v = v246947(nn); w = v000977(vecmax(v)); for (k=1, #v, for (j=1, #w, if (w[j] == v[k], print1(j, ", "); break);););} %Y A264780 Cf. A000977, A246947, A264762. %K A264780 nonn %O A264780 1,2 %A A264780 _Michel Marcus_, Nov 24 2015