A264788 a(n) is the number of circles added at n-th iteration of the pattern starting with 2 circles. (See comment.)
2, 2, 4, 4, 6, 10, 10, 12, 16, 16, 18, 22, 22, 24, 28, 28, 30, 34, 34, 36, 40, 40, 42, 46, 46, 48, 52, 52, 54, 58, 58, 60, 64, 64, 66, 70, 70, 72, 76, 76, 78, 82, 82, 84, 88, 88, 90, 94, 94, 96, 100, 100, 102, 106, 106, 108, 112, 112, 114, 118, 118, 120, 124
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms
- Sacred Geometry, Flower of Life
- Eric Weisstein's World of Mathematics, Flower of Life
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,0,1,-1},{2,2,4,4,6,10},100] (* Paolo Xausa, Nov 17 2023 *)
-
PARI
{a = 4; print1("2, 2, ", a, ", "); for(n = 2, 100, if (Mod(n,3)==0, d1 = 2); if (Mod(n,3)==1, d1 = 4); if (Mod(n,3)==2, d1 = 0); a = a + d1; print1(a, ", "))}
-
PARI
Vec(2*(1+x^2-x^3+x^4+x^5)/((1-x)^2*(1+x+x^2)) + O(x^100)) \\ Colin Barker, Dec 10 2015
Formula
From Colin Barker, Dec 10 2015: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>5.
G.f.: 2*(1+x^2-x^3+x^4+x^5) / ((1-x)^2*(1+x+x^2)).
(End)
Comments