This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264791 #13 Oct 02 2018 04:56:50 %S A264791 1,1,1,1,1,1,1,2,4,8,16,32,64,128,384,1152,3456,10368,31104,93312, %T A264791 279936,1119744,4478976,17915904,71663616,286654464,1146617856, %U A264791 4586471424,22932357120,114661785600,573308928000,2866544640000,14332723200000,71663616000000 %N A264791 Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 7. %C A264791 Column 1 of A264794. %H A264791 R. H. Hardin, <a href="/A264791/b264791.txt">Table of n, a(n) for n = 1..91</a> %F A264791 a(n) = Product_{i=0..6} floor((n+i)/7)!. - _Alois P. Heinz_, Jul 12 2016 %F A264791 a(n) ~ (2*Pi*n)^3 * n! / 7^(n + 7/2). - _Vaclav Kotesovec_, Oct 02 2018 %e A264791 All solutions for n=11 %e A264791 ..0....0....7....0....7....0....7....7....7....7....0....0....0....7....0....7 %e A264791 ..7....7....0....7....0....7....0....0....0....0....7....7....7....0....7....0 %e A264791 ..1....1....8....8....8....1....1....8....1....8....8....8....8....1....1....1 %e A264791 ..8....8....1....1....1....8....8....1....8....1....1....1....1....8....8....8 %e A264791 ..9....2....2....9....9....2....9....2....2....9....9....2....2....9....9....2 %e A264791 ..2....9....9....2....2....9....2....9....9....2....2....9....9....2....2....9 %e A264791 ..3....3...10....3....3...10...10....3...10...10...10...10....3....3...10....3 %e A264791 .10...10....3...10...10....3....3...10....3....3....3....3...10...10....3...10 %e A264791 ..4....4....4....4....4....4....4....4....4....4....4....4....4....4....4....4 %e A264791 ..5....5....5....5....5....5....5....5....5....5....5....5....5....5....5....5 %e A264791 ..6....6....6....6....6....6....6....6....6....6....6....6....6....6....6....6 %t A264791 Table[Product[Floor[(n + i)/7]!, {i, 0, 6}], {n, 1, 40}] (* _Vaclav Kotesovec_, Oct 02 2018 *) %Y A264791 Cf. A264794. %Y A264791 Column k=7 of A275062. %K A264791 nonn %O A264791 1,8 %A A264791 _R. H. Hardin_, Nov 25 2015