This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264803 #29 May 25 2020 06:29:44 %S A264803 3,7,11,29,47,71,191,379,607,1087,2103,6271,11231,18287,34303,110591, %T A264803 196591,357887,685951,1176431,2211837,4210399,14143037,25450463, %U A264803 46444543,89209343,155691199,298695487,550040063,1886023151 %N A264803 Numbers with largest ratio A003313(k)/log_2(k) in the range 2^n < k < 2^(n+1). %C A264803 The corresponding addition chain lengths are given in A253723. %C A264803 The quotient A003313(k)/log_2(k) has its conjectured maximum of 1.46347481 for k=71. Values of A003313 up to 2^31-1 are obtained from Achim Flammenkamp's web page, which provides a table computed by _Neill M. Clift_. %C A264803 In the paper by Wattel & Jensen, the conjectured maximum is proved to hold for all k > 71, too. - _Achim Flammenkamp_, Nov 01 2016 %D A264803 E. Wattel, G. A. Jensen, Efficient calculation of powers in a semigroup, 1968 in Zuivere Wiskunde 1/68. [From _Achim Flammenkamp_, Nov 01 2016] %H A264803 Achim Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html">Shortest addition chains</a> %H A264803 Hugo Pfoertner, <a href="/A264803/a264803.pdf">Plot of Records of A003313(k)/log_2(k) in Intervals [2^n,2^(n+1)]</a> %e A264803 a(3) = 11, because the maximum of quotients of shortest addition chain length l(k) and the base-2 logarithm of the numbers in the range 2^3 ... 2^4 occurs at k=11. %e A264803 k l(k) log_2(k) l(k)/log_2(k) %e A264803 8 3 3.0000 1.00000 %e A264803 9 4 3.1699 1.26186 %e A264803 10 4 3.3219 1.20412 %e A264803 11 5 3.4594 1.44532 %e A264803 12 4 3.5849 1.11577 %e A264803 13 5 3.7004 1.35119 %e A264803 14 5 3.8074 1.31325 %e A264803 15 5 3.9069 1.27979 %e A264803 16 4 4.0000 1.00000 %e A264803 a(30)=1886023151 because it produces the largest value of A003313(k)/log_2(k) in the interval 2^30 < k < 2^31, i.e., all other numbers in this range give a smaller quotient than A003313(1886023151) / log_2(1886023151) = 38 / 30.8127 = 1.23325771. %Y A264803 Cf. A003313, A253723. %K A264803 nonn,more %O A264803 1,1 %A A264803 _Hugo Pfoertner_, Dec 17 2015