A264806 Decimal expansion of the Bell number with index 1/2 calculated using Dobiński's formula.
7, 7, 3, 1, 9, 2, 6, 5, 6, 3, 7, 9, 2, 8, 5, 9, 8, 7, 4, 8, 2, 7, 6, 2, 5, 6, 7, 6, 0, 5, 9, 0, 3, 0, 0, 7, 8, 9, 4, 9, 3, 3, 1, 0, 6, 6, 2, 7, 6, 2, 0, 6, 8, 6, 9, 5, 9, 5, 3, 5, 8, 2, 5, 8, 3, 6, 3, 0, 0, 1, 7, 2, 8, 7, 0, 2, 8, 3, 9, 4, 7, 7, 9, 4, 4
Offset: 0
Examples
0.7731926563792859874827625676...
References
- G. Dobiński, Summierung der Reihe Sum(n^m/n!) für m = 1, 2, 3, 4, 5, . . ., Grunert Archiv (Arch. f. Math. und Physik), 61 (1877) 333-336.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..188
- Eric Weisstein's World of Mathematics, Dobiński's Formula, Poisson Distribution.
- Wikipedia, Dobinski's formula, Poisson distribution.
Programs
-
Mathematica
RealDigits[SequenceLimit[1`100 Accumulate[Table[k^(1/2)/(E k!), {k, 100}]]], 10, 85][[1]] (* or *) RealDigits[NExpectation[x^(1/2), Distributed[x, PoissonDistribution[1]], WorkingPrecision -> 110], 10, 100][[1]]