cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264809 Irregular array read by rows: row n contains the invariant factors of every (up to isomorphism) abelian group of order n for n>=2.

This page as a plain text file.
%I A264809 #15 Nov 27 2015 06:30:31
%S A264809 2,3,4,2,2,5,6,7,8,4,2,2,2,2,9,3,3,10,11,12,6,2,13,14,15,16,8,2,4,4,4,
%T A264809 2,2,2,2,2,2,17,18,6,3,19,20,10,2,21,22,23,24,12,2,6,2,2,25,5,5,26,27,
%U A264809 9,3,3,3,3,28,14,2,29,30
%N A264809 Irregular array read by rows: row n contains the invariant factors of every (up to isomorphism) abelian group of order n for n>=2.
%C A264809 Every finite abelian group can be uniquely expressed as the direct product: C_n1 X C_n2 X ... X C_ns for some integers n1,n2,...,ns where each integer is greater than 1 and each successive integer divides its predecessor. The integers n1,n2,...,ns are called the invariant factors. The order of the group is the product of its invariant factors.
%D A264809 D. S. Dummit and R. M. Foote, Abstract Algebra, Wiley, 2003, 3rd Edition, page 158.
%H A264809 Alois P. Heinz, <a href="/A264809/b264809.txt">Rows n = 2..5000, flattened</a>
%e A264809 {2},
%e A264809 {3},
%e A264809 {4}, {2, 2},
%e A264809 {5},
%e A264809 {6},
%e A264809 {7},
%e A264809 {8}, {4, 2}, {2, 2, 2},
%e A264809 {9}, {3, 3},
%e A264809 {10},
%e A264809 {11},
%e A264809 {12}, {6, 2},
%e A264809 {13},
%e A264809 {14},
%e A264809 {15},
%e A264809 {16}, {8, 2}, {4, 4}, {4, 2, 2}, {2, 2, 2, 2}
%e A264809 {17},
%e A264809 {18}, {6, 3},
%e A264809 {19},
%e A264809 {20}, {10, 2},
%e A264809 {21},
%e A264809 {22},
%e A264809 {23},
%e A264809 {24}, {12, 2}, {6, 2, 2},
%e A264809 {25}, {5, 5},
%e A264809 {26},
%e A264809 {27}, {9, 3}, {3, 3, 3},
%e A264809 {28}, {14, 2},
%e A264809 {29},
%e A264809 {30},
%e A264809 The row corresponding to n = 12 is 12,6,2 because the invariant factor decompositions of the 2, A000688(12), abelian groups of order 12 are: C_12 and C_6 X C_2
%t A264809 f[{x_, y_}] := x^IntegerPartitions[y];
%t A264809 g[n_] := FactorInteger[n][[1, 1]];
%t A264809 h[list_] :=Apply[Times,Map[PadRight[#, Max[Map[Length, SplitBy[list, g]]], 1] &,SplitBy[list, g]]];
%t A264809 Table[Map[h, Join @@@ Tuples[Map[f, FactorInteger[n]]]], {n, 2,
%t A264809    30}] // Grid
%Y A264809 Cf. A249770.
%K A264809 nonn,tabf
%O A264809 2,1
%A A264809 _Geoffrey Critzer_, Nov 25 2015